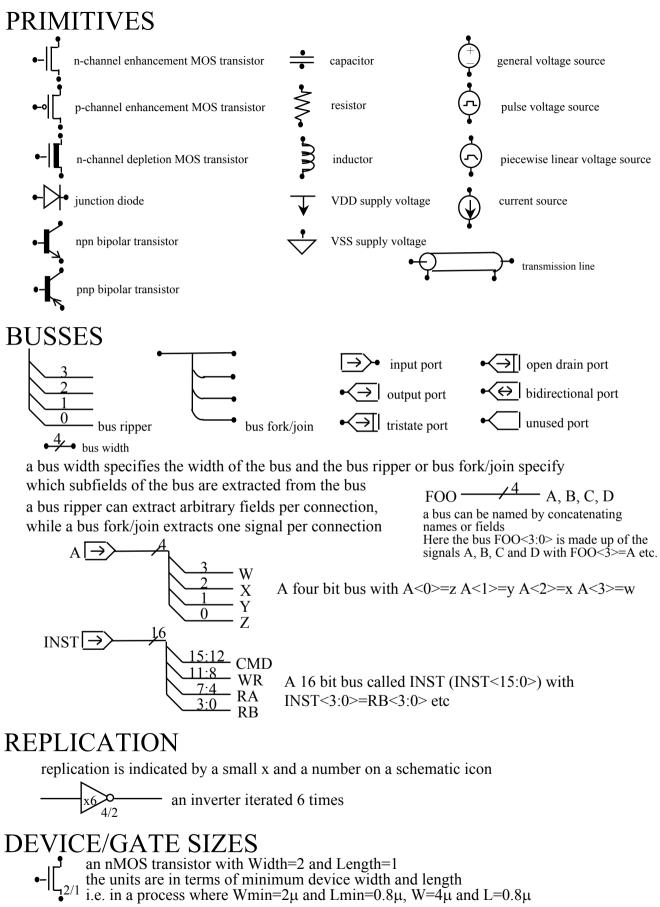

MOS Technology and Design Rule / Layout Rule


- Silicon semiconductor Technology
- CMOS process
- Layout Rules
- Latchup
- CAD issue
- Technology-related

MOS Transistors

Tai-Haur Kuo, EE, NCKU, 1997

Key to Schematics Used in The Book

an inverter with p transistor width=4*Wmin and n transistor width=2*Wmin 4/2

Tai-Haur Kuo, EE, NCKU, 1997

VLSI Design 2-3

Silicon Semiconductor Technology

- Wafer processing
 - Wafer are cut from ingots of single-crystal silicon that have been pulled from a crucible melt of pure molten polycrystalline silicon.
 - Controlled amounts of impurities are added to the melt to provide the crystal with the required electrical properties.
 - The crystal orientation is determined by a seed crystal that is dipped into the melt to initiate single-crystal growth.
- Oxidation
 - SiO₂ is extremely important for making silicon ICs
 - Two common approaches to achieve silicon oxidation on silicon wafers.
 - 1. Wet oxidation: when the oxidizing atmosphere contains water vapor.
 - 2. Dry oxidation: when the oxidizing atmosphere is pure oxygen
 - The oxidation process consumes silicon. Since SiO_2 has approximately twice the volume of silicon, the SiO_2 layer grows almost equally in both vertical <u>directions</u>.

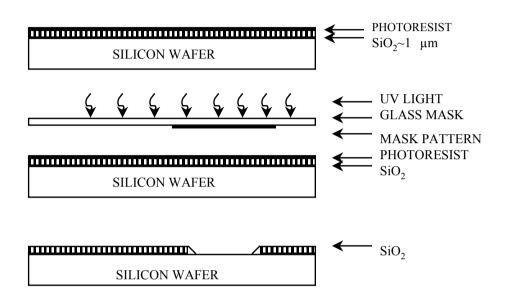
 $\underline{\text{SiO}_2}$ unoxidized silicon surface $\underline{\text{SiO}_2}$ \leftarrow field oxide (Thick oxide)

• SiO₂ by deposition

 SiO_2 silicon surface SiO_2

Silicon Semiconductor Technology (Cont.)

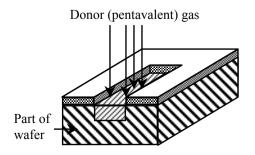
• Epitaxy


Its aim is to grow high-purity single-crystal layers of controlled thickness with accurately determined dopant concentrations distributed homogenerously throughout the layer The electrical properties of epi-layers are determined by the dopant and its concentration

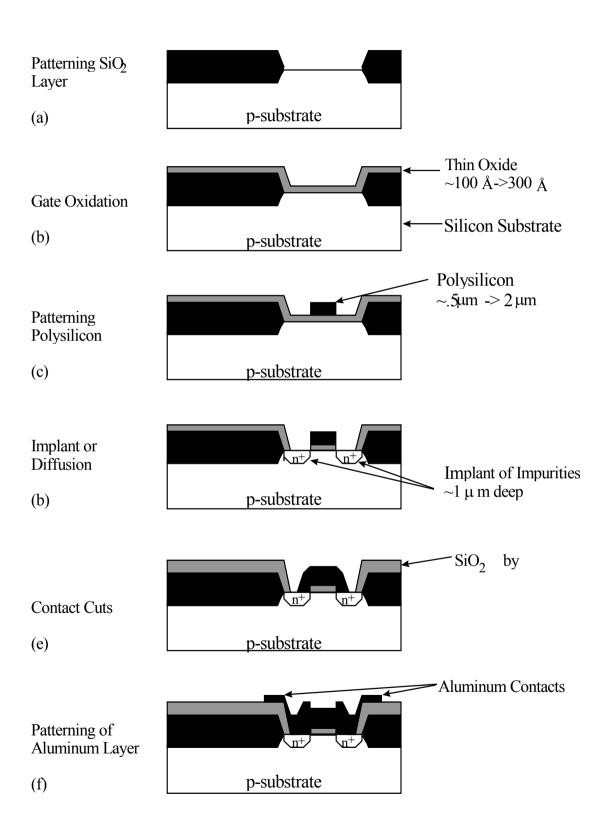
- Deposition
- Ion implantation
- Diffusion
- Donors and acceptors
 - Boron is frequently used for creating acceptor silicon
 - Arsenic and Phosphorous are commonly used to create donor silicon
- The common materials used as masks
 - 1. photoresist
 - 2. polysilicon
 - 3. SiO_2 (silicon dioxide)
 - 4. SiN (silicon nitride)

Etched SiO₂ Pattern

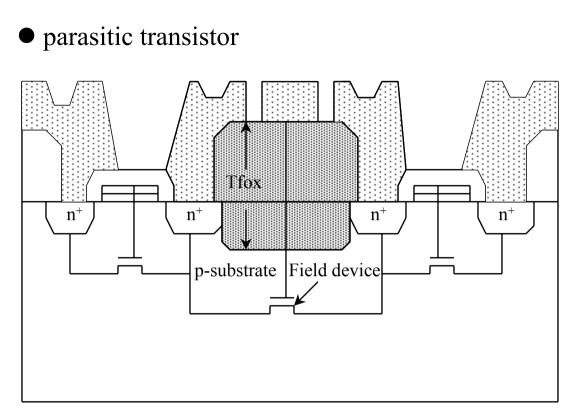
• Simplified steps


SILICON WAFER

• Photoresists:

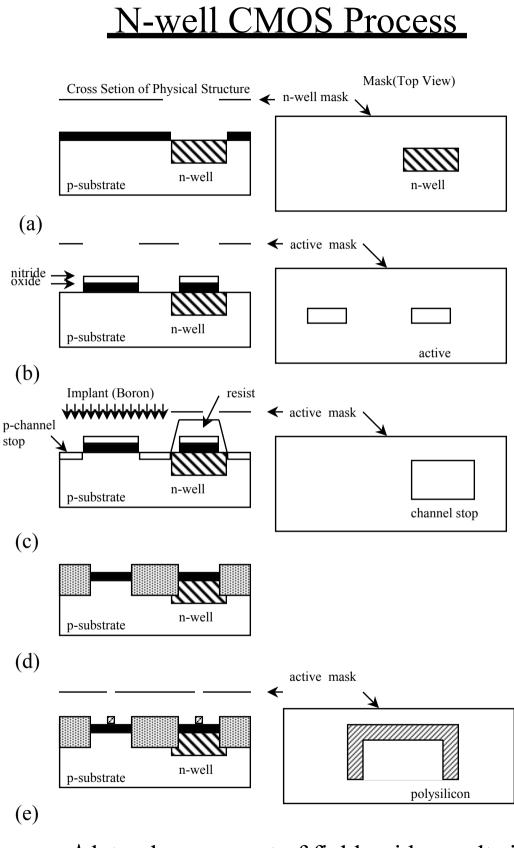

- NEG first historically POS better for dimensions<2.5 μm NEG insoluble where exposed POS soluble where exposed

Diffusion process

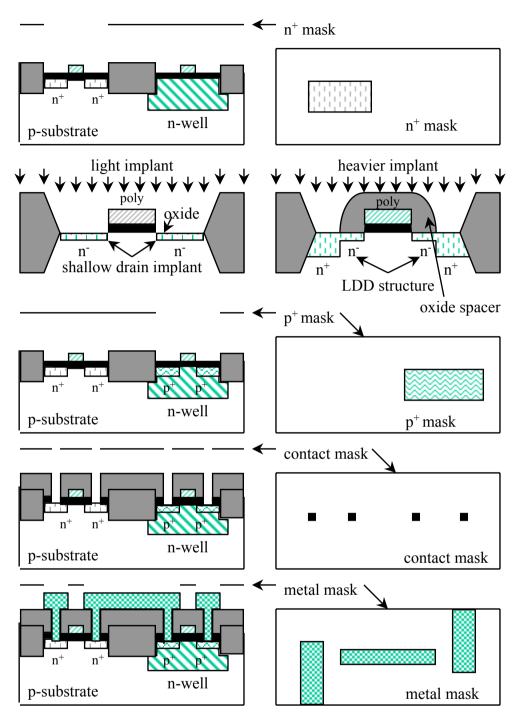


Fabrication of NMOS Transistors

- Self-aligned process (poly gate)



Field Transistors

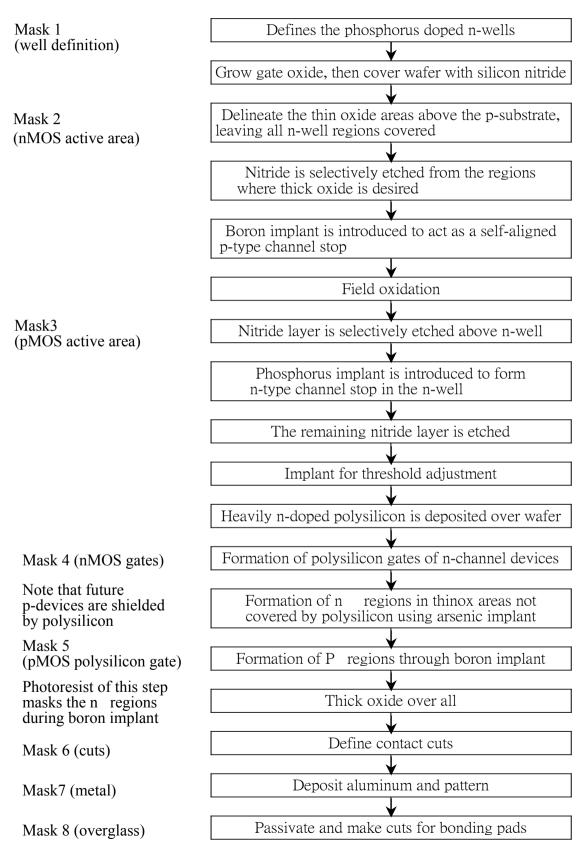

- It's threshold voltage is much higher than that of a regular transistor.
- High threshold is usually ensured by
 - 1. making the field oxide thick enough.
 - 2. introducing a " channel-stop " diffusion.

$$\Delta V_{th} \sim \frac{\sqrt{N}}{C} \sim t_{fox} \sqrt{N}$$

\$ lateral movement of field oxide results in
"bird's beak" (Fig.(d))

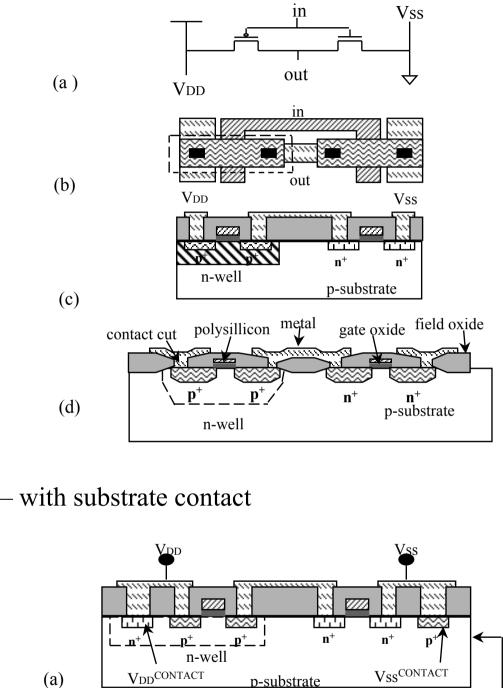
N-well CMOS Process(Cont.)

• final step (not shown):


1. passivation

— protect silicon surface from contaminants

2. openings to bond pads


N-well CMOS Process (Cont.)

• Flow diagram of Berkeley n-well fabrication

Cross Section of a CMOS Inverter

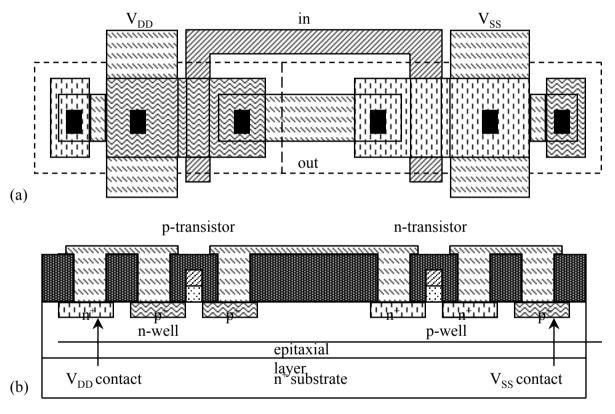
• N-well process

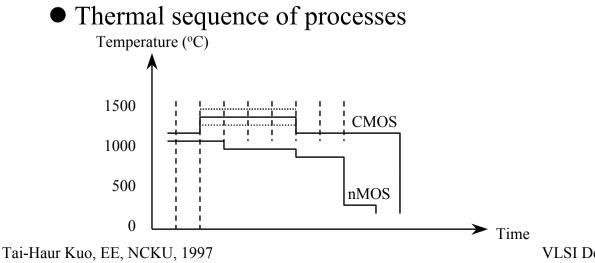
• P-well process can be similarly obtained

VDD

out

Vss


(b)


section

Cross Section of a CMOS Inverter (Cont.)

• Twin - well process

- --- provides the basis for separate optimization of the p-type and n-type transistors.
- --- starting material is either an n⁺ or p⁺ substrate with a lightly doped epilayer, which is used for protection against latchup.

VLSI Design 2-13

Process Enhancements

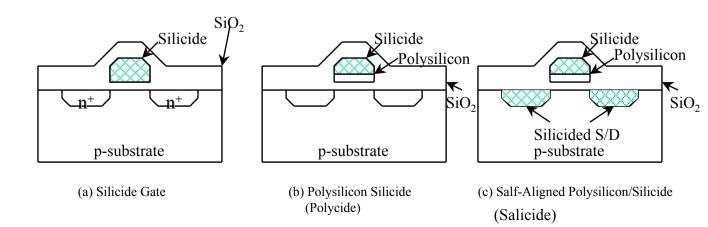
high-quality capacitors for

1. analog circuits : e.g. double-poly capacitor

2.memories : e.g. a. trench

b. stack

• resistors of variable characteristics


• double-metal, triple-metal(or more)

double-poly, triple-poly(or more)

(Via is required)

• Polysilicon/Refractory metal

- silicide: silicon and metal are mixed
- polycide = poly + silicide
- salicide: self-aligned polycide

Layout Design Rules

• Layout rules, i.e. design rules => mask-making rules

- a communication link between circuit designer and process engineer
- represent the best possible compromise between performance and yield
- define feature sizes, separations, and overlaps

• Two popular approaches

1. micron rules:

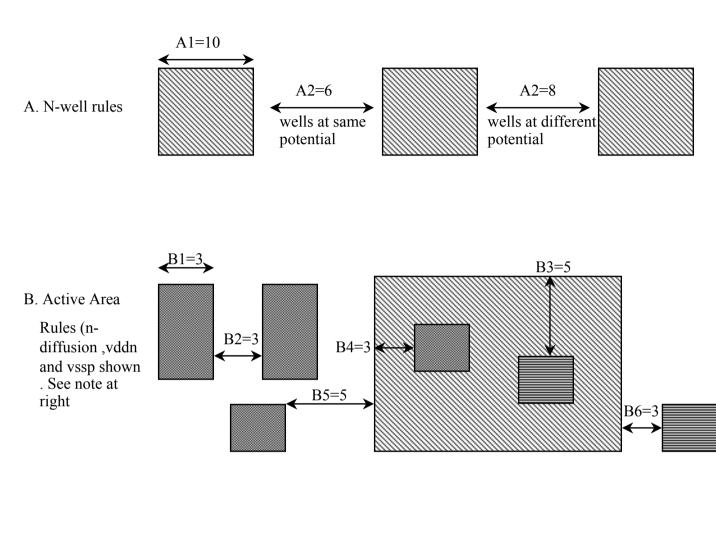
- most popular approach
- given as a list of minimum feature sizes and spacings for all masks reguired in a given process
- e.g. minimum gate length = $0.25 \mu m$
- 2. lambda(λ)- based rules:
 - base on a single parameter, λ , which characterizes the linear feature and permits first-order scaling
 - popularized by Mead and Conway
 - have been successfully used for $4 \sim 1.2~\mu m$ processes

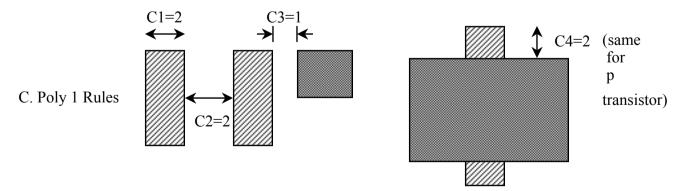
(probably not suitable for submicron processes)

Layout Design Rules (Cont.)

- minimum grid dimension
 - design rules are expressed in terms of minimum grid dimension
 - At the $1.25 \sim 2 \,\mu m$ level, a minimum grid unit of $0.2 \sim 0.25 \,\mu m$ was adequate.
 - In submicron processes, a value of $0.05 \sim 0.1 \,\mu$ m is more common.
 - layer representations
 - At the mask level, some layers may be omitted for clarity
 - At the symbolic level only n- and p-transistors will be shown

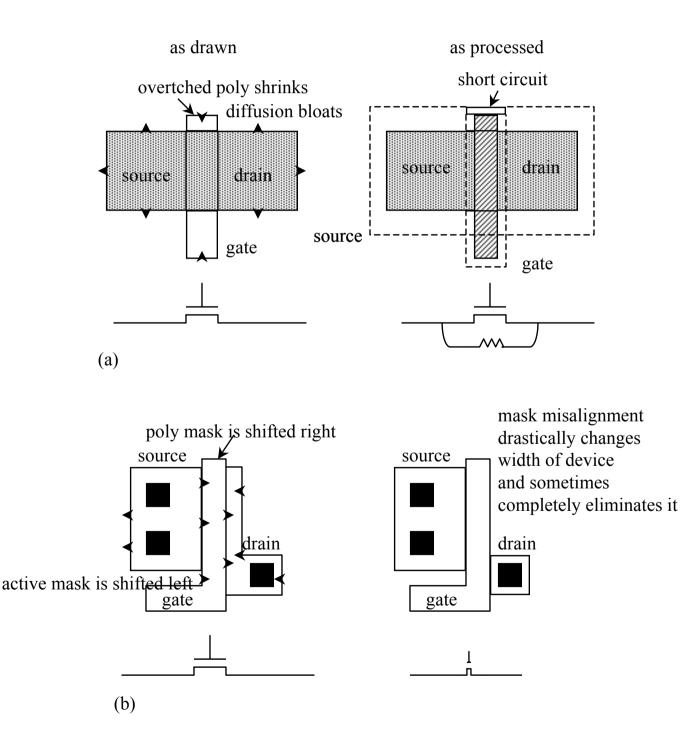
(refer to page 378 of textbook)


Layer Representations for the n-well CMOS process						
LAYER	COLOR	SYMBOLIC	COMMENTS			
N-well	Brown		Inside brown is n-well, out- side is p-type substrate.			
Thin-oxide	Green	n-transistor	Thinox may not cross a well boundary.			
Poly	Red	Polysilicon	Generally n^+ .			
P^+	Yellow	p-transistor	Inside is p^+ .			
Metal1	Light blue	Metal1	-			
Metal2	Tan	Metal2				
Contact-cut,	Black	Contact				
via						
Metal3	Gray	Metal3				
Overglass	-					


Layout Rules of a 1µm CMOS N-well Process

• Example		λRULE	λ/μRULE (0.5μ)	μRULE
*	A.N-well layer			
	A.1 Minimum size	10 λ	5μ	2 μ
	A.2 Minimum spacing			
	(wells at same potential)	6λ	3 μ	2 μ
	A.3 Minimum spacing	8λ	4 μ	2 μ
	(wells at different potentials)	0.11		- ~
	B.Active Area			
	B.1 Minimum size	3λ	1.5µ	1μ
	B.2 Minimum spacing	3λ	1.5µ	1 µ
	B.3 N-well overlap of $p+$	5λ	2.5µ	1 μ
	B.4 N-well overlap of $n+$	3λ	1.5µ	1μ
	B.5 N-well space to $n+$	5λ	2.5 µ	5μ
	B.6 N-well space to $p+$	3λ	1.5µ	3 μ
	C.Poly 1			
	C.1 Minimum size	2λ	1μ	1 µ
	C.2 Minimum spacing	$\frac{2\lambda}{2\lambda}$	1 μ	1μ
	C.3 Spacing to Active	1λ	0.5μ	0.5μ
	C.4 Gate Extension	2λ		
		2 N	1 μ	1μ
	D.p-plus/n-plus(<i>p</i> +, <i>n</i> +for short)	2λ	1	1
	D.1 Minimum overlap of Active	2λ 7λ	1μ 35μ	1μ 3μ
	D.2 Minimum size	1.2	3.5µ	3μ
	D.3 Minimum overlap of Active in abutting contact(see Fig. 3.2.7)	1.5	0.5	2
	D.4 Spacing of $p+/n+$ to $n+/p+$ gate	1λ	0.5µ	2 μ
	D + Spacing of $p + m + to m + p + gate$	3λ	1.5µ	1.5µ
	E.Contact			
	E.1 Minimum size	2λ	1 µ	0.75 μ
	E.2 Minimum spacing(Poly)	2λ	1μ	1μ
	E.3 Minimum spacing(Active)	2λ	1μ	0.75 μ
	E.4 Minimum overlap of Active	2λ	1μ	0.5 µ
	E.5 Minimum overlap of Poly E.6 Minimum overlap of Metal1	2λ	1μ	0.5 µ
	E.7 Minimum spacing to Gate	1λ	0.5µ	0.5 µ
	E. / Willing in Spacing to Gate	2λ	1μ	1 μ
	F.Metal1			
	F.1 Minimum size	3λ	1.5µ	1 μ
	F.2 Minimum spacing	3λ	1.5µ	1 μ
	G.Via			
	G.1 Minimum size	2λ	1μ	0.75 μ
	G.2 Minimum spacing	3λ	1.5μ	1.5μ
	G.3 Minimum Metal1 overlap	1λ	0.5μ	0.5μ
	G.4 Minimum Metal2 overlap	1λ	0.5µ	0.5µ
	H.Metal2			
	H.1 Minimum size	3λ	1.5µ	1μ
	H.2 Minimum spacing	3λ 4λ	1.5μ 2μ	1μ 1μ
				•
	I.Via2	2λ	1μ	1μ
	I.1 Minimum size I.2 Minimum spacing	$\frac{2\lambda}{3\lambda}$	1μ 1.5μ	
	1.2 minimum spacing	37	1.5μ	1.5µ
	J.Metal3			
	J.1 Minimum size	8λ	4 μ	4 μ
	J.2 Minimum spacing	5λ	2.5 µ	2.5 µ
	J.3 Minimum Metal2 overlap	2λ	1μ	1 μ
	J.4 Minimum Metal3 overlap	2λ	1 μ	1 μ
	K.Passivation			
	K.Passivation K.1 Minimum opening		100μ	100μ
	is i minimum opening		150µ	150µ

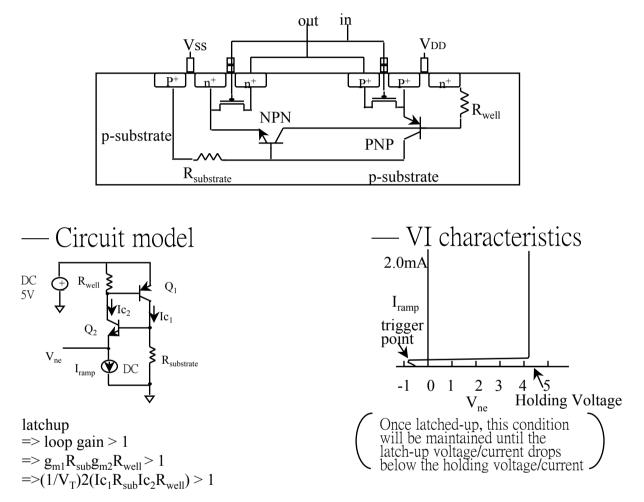
Layout Rules of a 1µm CMOS N-well Process


(Cont.)

Design Rule Background

Example: effects of insufficient gate extension and source-drain extension

Scribe Line


- Surrounds the completed chip and is the point at which the chip is cut with a diamond saw
- Where test circuits can be placed for wafer probe

LAYER	CIFLAYER NAME	CALMANUMBER
Well	CWG	14
N-well	CWN	1
P-well	CWP	2
Active	CAA	3
Select	CSG	15
P-select	CSP	8
N-select	CSN	7
Poly	CPG	4
Poly Contact	ССР	45
Poly 2 (Electrode	e) CEL	5
Electrode Contac	t CCE	55
Active Contact	CCA	35
Metal1	CMF	10
Via	CVA	11
Metal2	CMS	12
Via2	CVB	65
Metal3	CMT	14
Overglass	COG	13

Laver Assignments

Latchup

- May occur in both p-well and n-well CMOS processes
- CMOS N-well example
- Cross section of an inverter

- Causes
 - internal transient currents or voltages during power-up
 - external glitches on I/O pad
 - external radiation
- Triggering methods
 - 1. current injected into the NPN emitter
 - 2. current injected into the PNP emitter
 - 3. drastic current/voltage changes on any mode

Tai-Haur Kuo, EE, NCKU, 1997

VLSI Design 2-21

Latchup Prevention

• Two basic concepts (for reducing loop gain)

- 1. reduce R well and R substrate
- 2. reduce β npn and β pnp (i.e. reduce Ic1 and Ic2)
- Two basic ways
 - 1. latchup resistant CMOS process
 - 2. layout techniques
- Internal latchup prevention techniques
 - Every well must have a substrate contact of the appropriate type.
 - Every substrate contact should be connected to metal directly to a supply pad (i.e., no diffusion or polysilicon underpasses in the supply rails).
 - Place substrate contacts as close as possible to the source connection of transistors connected to the supply rails (i.e., Vss n-devices, VDD p-devices). This reduces the value of R*substrate* and R*well*. A very conservative rule world place one substrate contact for every supply(Vss or VDD) connection.
 - otherwise a less conservative rule is to place a substrate contact for every 5-10 transistors or every 25-100μm.
 - Lay out n- and p-transistors with packing of n-devices toward Vss and packing of p-devices toward VDD (see layout styles in Chapter5). Avoid "convoluted" structures that interwire n- and p-devices in checkerboard styles (unless you are designing in SOI which is latchup free).

Latchup Prevention (Cont.)

• I/O latchup prevention

- -Physically separate the n- and p-driver transistors (i.e., with the bonding pad).
- —Include P^+ guard rings connected to Vss around n-transistors.
- —Include n^+ guard rings connected to VDD around p-transistors.
- —Source diffusion regions of the n-transistors should be placed so that they lie along equipotential lines when current flows between Vss and the p-wells: that is, source fingers should be perpendicular to the dominant direction of current flow rather than parallel to it. This reduces the possibility of latchup through the n-transistor source, due to an effect called "field aiding."
- —Shorting n-transistor source regions to the substrate and the ptransistor source regions to the n-well with metallization along their entire lengths will aid in preventing either or these diodes from becoming forward-biased, and hence reduces the contribution to latchup from these components.
- —The n-well should be hard-wired (via n^+) to power so that any injected charge is diverted to VDD via a low-resistance path. The n-well has relatively high sheet-resistance and is susceptible to charge injection.
- —The spacing between the n-well n+ and the p-transistor source contact should be kept to a minimum. This allows minority carriers near the parasitic pnp-transistor emitter-base junction to be collected, and reduces R *well*. The rules for the 1 μ process suggest one contact for every 10 μ -50 μ .
- —The separation between the substrate P+ and the n-transistor source contact should be minimized. This results in reduced minority carrier concentration near the npn-emitter-base junction. Similar spacings to those suggested above apply for processes in the 1μ range.

Technology-Related CAD Issues

Design rule check(DRC)

--- check if layout rules are obeyed
--- e.g. CADENCE DRACULA DRC

Circuit extraction

--- generate netlist from layout (SPICE format)
--- can be used for post-layout simulation e.g. SPICE simulation
--- can be used for layout-vs-schematic (LVS) check