

39

THE UNIVERSITY OF NOTTINGHAM

SCHOOL OF ELECTRICAL AND

 ELECTRONIC ENGINEERING

[image: image104.wmf])

(

)

(

)

(

t

y

t

x

t

h

Ä

=

Digital image correlation for deformation measurement
AUTHOR

H Bruce

SUPERVISOR

Dr See

DATE

May 2003
Contents

3Abstract

41. Introduction

62. Digital Image Correlation

73. Why Texture and Reflectivity Affect DIC

73.1 Reflectivity Measurement

73.2 Texture Measurement

73.3 How Reflectivity affects DIC

94. Image Modelling & Formation

94.1 Speckle Patterns

104.2 Speckle Functions

114.3 Sample Speckle Patterns

134.4 Real Image Formation

155. Reflectivity and Texture Assessment & Recognition

155.1 Reflectivity

155.2 Texture

166. Object Recognition

166.1 Sobel Edge Detection

186.2 The Hough Transform

206.2.1 Hough Transform Optimisations

206.2.2 The Hough Transform Error susceptibility

216.2.3 Retrieving Lines from the Hough space

246.3 Intersection Recognition

246.3.1 Looping Intersecting and Removal Technique

256.3.2 Cumulative Intersection Addition Technique

287. Reflectivity Equalisation

308. Object Recognition & Equalisation Applied

349. Further Texture Recognition Techniques

349.1 Texture Equalisation

3510. Image Noise Removal

3510.1 The Median Filter

3610.2 Applying the Median Filter

3811. Conclusion

39References

40Appendix 1. Introduction to Correlation and the Shift Theorem

40A1.1 Correlation

40A1.2 Shift Theorem

42Appendix 2. Advanced Correlation

Abstract

Digital Image Correlation (DIC) is an important method in science and engineering for determining the stress and strain in an object, typically a silicon semiconductor. DIC works by taking two images, one before deformation and one after, and correlating them, with the shift shown by the correlation signifying the displacement that has occurred. Differences in the levels of reflectivity and texture in the two images significantly affect the accuracy of DIC. This project attempts to reduce these errors by equalising the different levels. An important part of doing this is recognising the areas with differences, such as silicon, packaging material or solder joints. Noise, both extrinsic and intrinsic, adds to the error and the use of a median filter helps reduce this.

1. Introduction

Modern day life relies on microelectronic devices and they are present in everything from a simple toaster to complex super-computers. To be usable, these silicon chips must be protected both mechanically and electrically from the surrounding environment without compromising their electrical connections. Packaging encases the silicon chip, catering for the above protection and connectivity requirements. As well as the silicon, solder and electrical connections present in the overall package, the casing may be made from more than one material. All these materials will have varying coefficients of thermal expansion (CTE) and so will expand and contract at different rates with temperature variations. Because devices are expected to work from around -40(C to over 100(C, stress and strain builds up within the device and leads to deformation and possible failure.

A means of measuring and locating this deformation would allow the design or materials used to be altered, reducing the chance of device malfunction, something extremely important to the manufacturers. Digital Image Correlation (DIC) is one possible method of doing this and consists of image capture and image processing. Two images of the same area are required, one at the ambient temperature and a second after a temperature variation. The Fourier transform of the same region in both images is then correlated and any movement will be shown in the Inverse Fourier transform of the result according to the Shift Theorem. It is then possible to work backwards and quantify the amount the material has moved. The benefits of DIC are that it is a non-contacting system, due to its optical nature, it requires very little preparation of the sample and is extremely sensitive.

To be able to compare the amount of shifting in one region to that in another, the properties of the regions must be the same. When the regions occur within the same material the properties are very similar, however some materials have differing properties so direct comparison would not produce a correct result. Specifically it is the reflectivity of the material that has the greatest impact on the Fourier transform, although changes in texture also have an effect. Although the variations can be small, they are consequential in relation to the magnitude of the deformation, which maybe in the region of 10nm. Recognition of different types of surface and subsequent adjustment of the image signal is then necessary to allow accurate comparison.

A prerequisite of reflectivity adjustment is knowledge of the area of each material within the image, so correction can be applied only to that area and not accidentally to another material, which may have different properties [1]. This requires the use of object recognition, a procedure that identifies the separate areas in the image and then allows each area to be altered independently.

To test all of these procedures accurately and eliminate the errors associated with experimental work means using computer generated images of a typical semiconductor device. As well as virtually eliminating extrinsic errors (such as those from noise and Electromagnetic Radiation) this approach has the advantage of being very versatile because the generated images can easily be altered through a series of variables. The method used for generating these images is based on the scattering of coherent laser light to form speckle patterns. The properties of these images are very similar to those taken of actual devices and so are ideal for testing purposes.

Once the above methods have been developed and tested on speckle patterns, actual device images are used. Using actual images means extrinsic noise is also an issue and so a median filter is introduced to reduce these noise levels. The advantage of a median filter when compared to a gaussian filter is that it leaves edges intact, which is very important for the edge detector.

Due to the mathematical nature of this project, MATLAB is the package that is used for all the programming because of its large inbuilt database of maths functions and its ability to perform actions quickly on large arrays - which is essentially what an image is.

The aims of this project are:

· To investigate why reflectivity and texture variations affect the DIC technique.

· To use object recognition and reflectivity compensation on actual device images.

The objectives of this project are:

· To model the optical image capture system and so generate images representing a region of semiconductor, for example.

· Describe reflectivity and texture variations.

· Develop an object recognition algorithm.

· Combine object recognition and reflectivity analysis to provide an equalised output image.

This report consists of:

· An introduction to DIC

· A look at the theory behind DIC and what factors affect it

· How speckle and real images are formed

· The procedure for recognising reflectivity and texture

· How the object recognition process works

· How the varying reflectivity is subsequently equalised

· Recognition techniques for varying texture

· The application of the median filter for noise removal

2. Digital Image Correlation

The process of DIC relies on correlating the original and displaced images (see Appendix A for an overview of correlation and its basic application). Each image is split into a number of sub-images, a higher number of divisions gives more accurate results but is also more computationally expensive. Typically the size of a sub-image is in the region of 32 pixels square, so an image that is 320 by 320 pixels would be split into 100 sub-images. It is also possible for the sub-images to overlap slightly, but the resolution of the DIC system is always lower than that of the optical system used to get the images, thus reducing the value of doing this.

Each of the sub-images in the original is correlated with the same sub-image in the displaced image and the resulting peak position indicates the displacement to pixel accuracy. However, the amount of deformation is usually very small, especially in thermal deformation cases and so it is often necessary to measure it to subpixel accuracy. This can be done in a variety of ways and two such methods are by using successive approximation nonintegral pixel shifting and also by using artificial neural networks [2].

The displacements for all the sub-images can be collated and a displacement map produced which shows the extent and direction of the displacement for each part of the image, as in Figure 2.1. The orientation of the arrows shows the direction of shift and their length the magnitude, which averages 10-20nm.

[image: image1.wmf]
Figure 2.1: A typical displacement map.

This simplified approach works fine for images where the only difference between the two images is a displacement. Introducing other variations, such as reflectivity and texture either between the images or within the images, affects the correlation and produces inaccurate results. Therefore, it is necessary to equalise these variations, usually mostly within the images, for the results from the correlation to be accurate. Exactly how the texture and reflectivity effect the correlation is discussed in the chapter 3.

Numerous algorithms already exist that perform DIC and many have been optimised over time for speed and accuracy, resulting in complicated but extremely efficient procedures. As a result, it would be unproductive to try to create a new algorithm, instead this project concentrates on reducing the effects of reflectivity and texture and so increasing the accuracy of the DIC procedure.

3. Why Texture and Reflectivity Affect DIC

So far the original and displaced images have been simple functions, for example x(t) and y(t+() respectively. These have neglected any variations in reflectivity and texture, which change the functions and so also the correlation used to assess their displacement.

3.1 Reflectivity Measurement

Reflectivity is defined as the “property of rebounding light”, so it is easy to see that a low reflectivity will lead to a low level of light effectively ‘emitted’ (rebounded from the light source) from the surface and thus a low intensity captured by the camera taking the image. The reverse is true for highly reflective surfaces leading to a high intensity being captured by the camera. So it is possible to directly link reflectivity and image intensity, providing a means of measuring reflectivity in the image.

With respect to the mathematical functions used to represent the images, a variable for reflectivity can be added by means of a multiplying factor, ie.

x(t)
with no reflectivity i.e. a dark image, can be written as

ax(t)
with a factor a of reflectivity.

3.2 Texture Measurement

Providing a simple yet precise means of representing texture in an image is a harder task and this is an area where much research has been carried out. Texture can be broadly defined as the nature or quality resulting from the composition of a surface. However, this definition is of no use when trying to establish a mathematical measure for texture. Instead it is necessary to look at the level of homogeneity and define areas of texture based on this [3]. But even defining homogeneity in mathematical terms is hard and usually concerns several different processes. For this reason, this project takes a more qualitative look at texture and its effects on DIC.

3.3 How Reflectivity affects DIC

Given an image containing two different levels of reflectivity how does this effect the DIC process? Figure 3.1 shows an image with two different reflectivity areas mathematically described as discussed in Section 3.1. The areas in this image are then subject to a linear deformation of (1 and (2 respectively and the result is shown in Figure 3.2.

	[image: image46.wmf])

(

)

(

)

(

t

y

t

x

t

h

Ä

=

[image: image47.wmf])

(

)

(

)

(

t

x

t

y

t

h

Ä

¹

h(t)

Figure 3.1: Original Image h(t).
	h(t-()

Figure 3.2: Deformed Image h(t-()

The correlation V of these two images is then:

[image: image48.wmf]))

(

(

*

)).

(

(

))

(

(

)

(

t

x

FFT

t

y

FFT

t

h

FFT

H

=

=

w

The cross terms (x1 (x2) from the correlation have been assumed to be zero because x1(t) and x2(t) are consistent, have random texture and zero mean. The mathematics of performing this correlation is shown in Appendix 2, with the result being:

[image: image49.wmf]))

(

(

)

(

w

H

IFFT

t

h

=

This result can be illustrated by sketching graphs for v1 and v2, shown in Figures 3.3 and 3.4 respectively, the addition of which is V, shown in Figure 3.5.

[image: image50.wmf]ò

¥

¥

-

-

-

=

dt

e

t

x

Y

t

i

w

t

)

(

[image: image51.wmf]'

)

'

(

'

ò

¥

¥

-

-

-

=

dt

e

t

x

Y

t

i

t

w

	Figure 3.3: Sketch of v1
	Figure 3.4: Sketch of v2

[image: image52.wmf]'

)

'

(

'

ò

¥

¥

-

-

-

=

dt

e

e

t

x

Y

t

i

wt

w

Figure 3.5: Sketch of V= v1+ v2 .

It is clear from Figures 3.3 and 3.4 that the values of a and b influence the location of (r (the overall amount of deformation) in Figure 3.5. So it is necessary for the values of a and b to be equal for the overall amount of deformation to be accurate and this is what the reflectivity equalisation process does.

4. Image Modelling & Formation

To fully test the object recognition algorithm it was necessary to be able to create model images, which could then be used as inputs. The advantages of producing model images are that it is possible to define parameters (which can easily be altered) and models are free from interference (EM and noise). Speckle patterns were used as the basis for the model as they closely resemble real images taken with optical systems [4]. Real images were also used, however instead of taking just one picture of the object, two are taken at different exposures and then combined to provide a better overall level of detail.

4.1 Speckle Patterns

Speckle patterns are produced by coherent light (from a laser for example) interfering with itself as a result of reflecting off an optically rough surface. When the coherent light hits the rough surface the phase of all the rays of light is altered randomly and rapidly and this leads to either constructive (rays in phase) or destructive (rays out of phase) interference, hence causing bright and dark patches. Figure 4.1 illustrates how this process works.

[image: image53.wmf]))

(

(

))

(

(

t

+

=

=

t

x

FFT

t

y

FFT

Y

Figure 4.1: Overview of Speckle Pattern Formation

The resulting image captured by the camera contains a random distribution of brighter and darker points, shown in Figure 4.2.

[image: image54.wmf]wt

wt

i

i

Xe

e

t

x

FFT

Y

-

-

=

=

))

(

(

Fig. 4.2: Typical Speckle Pattern

Each part of this process can be modelled in Matlab to form an algorithm capable of producing a speckle pattern. The rough surface of the material is equivalent to a normally distributed matrix with the same dimensions as the image and represents the intensity of the light at that point after any interference. The lens that the rays pass through can be modelled as a low pass filter because its size determines the intensity of light it focuses onto the CCD.

The steps taken to achieve this are outlined in the flow diagram below.

[image: image55.wmf]t

p

f

i

Xe

Y

2

-

=

[image: image56.wmf]iKRandImg

e

P

=

[image: image57.wmf]2

2

Gy

Gx

G

+

=

[image: image58.wmf]Gx

Gy

arctan

=

q

[image: image59.wmf])

(

)

(

a

l

l

-

-

Ä

=

t

h

h

V

[image: image60.wmf]l

a

l

a

l

l

l

d

t

bx

t

ax

bx

ax

V

ò

¥

¥

-

-

-

+

-

-

+

=

)]

(

)

(

)][

(

)

(

[

2

2

1

1

2

1

[image: image61.wmf])

(

)

(

)

(

)

(

2

2

4

1

1

3

2

2

1

1

a

l

a

l

l

l

-

-

=

-

-

=

=

=

t

bx

u

t

ax

u

bx

u

ax

u

[image: image62.wmf]l

d

u

u

u

u

u

u

u

u

V

ò

¥

¥

-

+

+

+

=

]

[

4

2

3

2

4

1

3

1

[image: image63.wmf])

(

)

(

a

l

l

-

-

Ä

=

t

h

h

V

[image: image64.wmf]))

(

)

(

(

))

(

)

(

(

2

2

2

2

1

1

1

2

a

l

l

a

l

l

-

-

Ä

+

-

-

Ä

=

t

x

x

b

t

x

x

a

V

[image: image65.wmf])]

(

)

(

[

)

(

]

)

(

[

)

(

2

2

1

1

2

1

a

a

a

-

+

-

=

-

+

=

t

bx

t

ax

t

H

bx

t

ax

t

H

[image: image66.wmf]0

)

(

)

(

2

1

=

Ä

l

l

x

x

[image: image67.wmf]l

d

u

u

u

u

V

ò

¥

¥

-

+

=

]

[

4

2

3

1

[image: image68.wmf]l

a

l

l

l

a

l

l

d

t

x

x

b

d

t

x

x

a

V

ò

ò

¥

¥

-

¥

¥

-

-

-

+

+

-

-

+

=

)

(

)

(

)

(

)

(

2

2

2

2

1

1

1

2

[image: image69.wmf]))

(

)

(

(

))

(

)

(

(

2

2

2

2

1

1

1

2

a

l

l

a

l

l

-

-

Ä

+

-

-

Ä

=

t

x

x

b

t

x

x

a

V

4.2 Speckle Functions

This process is implemented in Matlab using three functions: ImgGenerator, CircleFilter and Scale. ImgGenerator is the primary function which creates the various arrays, does the Fourier Transformations and also calls the CircleFilter function. This creates a matrix of zeros the size of the image with a circle of ones in the centre with a radius as specified in its arguments, which is then multiplied element-by-element in the frequency domain - acting as a low pass filter. The output of Stage 6 is then given as an argument to the Scale function which returns the final Speckle Pattern.

The parameters used in the creation of speckle patterns and the reason for their values are shown in Table 4.1.

	Parameter
	Value
	Reason for Value

	Image Size
	128
	Provides a substantial image size but is small enough to not too computationally expensive.

	Wavelength
	0.5x10-6
	Typical laser light has a wavelength of 0.5(m.

	Filter Size
	50
	A filter bandwidth of 50 pixels is typical for an optical system used for this application. This parameter is the most often altered as it effects the ‘size’ of the speckles.

	Maximum Photon Count
	100,000

per pixel
	This is a typical photon saturation count for a modern CCD cell, above this level the cell cannot register any more photons hitting it.

Table 4.1

4.3 Sample Speckle Patterns

Figures 4.3-4.6 show some speckle patterns and the parameters that were used to create them.

	[image: image2.png]

Figure 4.3

Image Size: 128, Wavelength: 0.5x10-6

Filter Size: 100, Max Photon Count: 4000
	[image: image3.png]

Figure 4.4

Image Size: 128, Wavelength: 0.5x10-6

Filter Size: 50, Max Photon Count: 4000

	
	

	[image: image4.png]

Figure 4.5

Image Size: 128, Wavelength: 0.5x10-6

Filter Size: 26, Max Photon Count: 1000
	[image: image5.png]

Figure 4.6

Image Size: 128, Wavelength: 0.5x10-6

Filter Size: 10, Max Photon Count: 1000

4.4 Real Image Formation

It is possible just to take one picture and use that as the input to the DIC routine, however, if there are substantial variations in reflectivity then most of the detail in the areas with low levels of reflectivity is lost, shown in Figure 4.7. The reason for this is that the camera is trying to compensate for the variation by using an exposure level only suited to the highest reflectivity. To solve this problem a second picture is taken at a much higher exposure level, Figure 4.8 and then combined with the first, to form Figure 4.9.

	[image: image70.wmf])

(

)

(

)

(

t

x

t

y

t

h

Ä

¹

[image: image71.wmf]))

(

(

))

(

(

t

+

=

=

t

x

FFT

t

y

FFT

Y

[image: image72.wmf]))

(

(

*

)).

(

(

))

(

(

)

(

t

x

FFT

t

y

FFT

t

h

FFT

H

=

=

w

[image: image6.jpg]

Figure 4.7: Single picture taken at low exposure

	[image: image7.jpg]

Figure 4.8: 2nd picture taken at high exposure
	[image: image8.jpg]

Figure 4.9: Combined image from 1st and 2nd pictures

The colorbar in Figure 4.7 indicates that there are only 255 levels in the image and this is equivalent to a level of detail. This is the same for Figure 4.8 however this picture has been taken at an exposure level 30 times greater than the first, providing much greater detail in the darker areas of the image but saturating the lightest areas.

How the combination of these two pictures is done is shown in the following pseudo-code.

threshold=150

// good setting for 256 level image

Read image1

// low exposure image

Read image2

// high exposure image

Loop through all pixels in image2

If pixel value > threshold

image2 pixel = image1 pixel * 30

End If
End Loop

Output image1

The reason for the multiplication by 30 when replacing the pixels that are greater than the threshold is to allow for the 30 time greater exposure that image2 has. Figure 4.9 shows the combined image and its pixel values range from 0-7650 (30*255), therefore it has a much greater amount of detail than the single picture. A greater amount of detail results in better performance from the edge detector, discussed in Section 6.1.

5. Reflectivity and Texture Assessment & Recognition

In Chapter 3 it was established how changes in reflectivity and texture affect DIC and so confirm the need to equalise any differences before performing the correlation. What then is the process for assessing the reflectivity or texture in an image and then recognising that it is part of a specific area within the image?

5.1 Reflectivity

Recalling from Section 3.1 that reflectivity can be thought of as a multiplying factor that directly alters the intensity of an area or pixel, then this intensity can be used to assess the reflectivity. Measuring the intensity of a pixel in an image is just a case of taking the value of that pixel and relating it to the maximum and minimum values possible in that image. For example, in a greyscale image with 256 levels of grey, a pixel with the value of 0 will appear black, i.e. no light has been reflected from the object and a pixel value of 255 will appear white, i.e. the level of light necessary for saturation of the CCD has been reflected. Recognising areas with equal reflectivity relies on classifying areas by intensity and this is the method this project follows and is explained in detail in Chapter 6.

5.2 Texture

Assessing texture variations within an image is a far harder task however there is a certain overlap with reflectivity assessment. For example, many texture variations also result in a change in reflectivity, such as the two shown in Figure 5.1, and would therefore be recognised as being different areas through their reflectivity variations. However there are of course textures with roughly the same reflectivity, such as the two in Figure 5.2, and these would not be recognised as being different.

	[image: image9.png]

	[image: image10.png]

	Figure 5.1: Textures with differing reflectivity [4]
	Figure 5.2: Textures with equal

average reflectivity [4]

So to be able to assess all texture variations requires a method that truly examines the texture and is not reflectivity based. Wavelets are an increasingly common way to achieve this and work by dividing the image (or sub-image) into different frequency components and then analysing each one with a resolution matched to its scale [5].

6. Object Recognition

In reality, changes in reflectivity or texture in a picture do not necessarily mean a different object, for example: shadows cast on a wall change the reflectivity of the wall in those areas but its still the same object. Mostly, however, sharp changes in reflectivity or texture represent a change in object and this project utilises this assumption.

There are two distinct parts to object recognition, firstly recognising the edges in an image and then secondly, using these edges to delineate areas of the same reflectivity or texture. Many different edge detectors exist ranging in complexity and accuracy, the one used in this project is the Sobel Edge Detector which is efficient and also less sensitive to noise, an advantage when dealing with real images [6]. Having established the edges in an image it is necessary to determine some form of geometric description which can then be used as the basis for classifying objects. A technique which does exactly that is the Hough Transform and is an extremely powerful tool for isolating features within an image [7]. The transform can be generalised to detect any features or in its classical form detects features which can be described parametrically, for example: lines, curves and ellipses. For this project, the transform was designed to detect lines as the large majority of edges in electronic devices are straight lines.

6.1 Sobel Edge Detection

The Sobel Edge Detector uses the common method of Convolution to determine the absolute gradient magnitude at each point in an image. Convolution is the procedure of ‘multiplying together’ two arrays, in this case the image and a much smaller one - the kernel. The kernel is slid over the image and element-by-element multiplication done at each possible position to give another array the same size as the image. For example consider the small image on the left and a 2x2 kernel on the right below:

	I11
	I12
	I13
	I14
	I15
	I16
	
	
	

	I21
	I22
	I23
	I24
	I25
	I26
	
	K11
	K12

	I31
	I32
	I33
	I34
	I35
	I36
	
	K21
	K22

	I41
	I42
	I43
	I44
	I45
	I46
	
	
	

	I51
	I52
	I53
	I54
	I55
	I56
	
	
	

The Output image would then be calculated as follows:

O11=I11K11 + I12K12 + I21K21 + I22K22,

O12=I12K11 + I13K12 + I22K21 + I23K22 ……up to

O45=I45K11 + I46K12 + I55K21 + I56K22.

This can be performed extremely quickly in Matlab by using the built-in ‘.*’ operator. The resulting Output image is one row and column smaller than the input image (if a 2x2 kernel is used), but this is generally not a problem.

The Sobel operator uses a pair of 3x3 kernel as follows [8].

	-1
	0
	1
	
	
	1
	2
	1

	-2
	0
	2
	
	
	0
	0
	0

	-1
	0
	1
	
	
	-1
	-2
	-1

	
	Gx
	
	
	
	
	Gy
	

[image: image73.wmf]))

(

(

)

(

w

H

IFFT

t

h

=

These are designed to respond maximally to horizontal and vertical lines. Gx and Gy are applied separately to the input image and provide measurements of the gradients in each direction. The gradient magnitude at the centre point of the kernel is then calculated by:

The angle of orientation can also be calculated by:

[image: image74.wmf]2

2

Gy

Gx

G

+

=

Applying the Sobel Operator to the speckle image in Figure 6.1 gives an output as shown in Figure 6.2. This speckle image has been formed from a standard speckle and then had the three different areas multiplied by factors of 1, 10 and 100 thus producing areas of different intensity. The red and yellow that marks the edge of the highest intensity speckle area in Figure 6.2 shows that the edge detection has been successful. This array is thresholded before it is input to the Hough Transform to remove most of the background noise. For example, using a threshold of 1.5x104 on Figure 6.2 would retain the edges but remove some of the rest of the data.

	[image: image11.jpg]

Figure 6.1: Speckle Image with varying intensity
	[image: image12.jpg]

Figure 6.2: Application of the Sobel Edge Detector to Figure 6.1.

6.2 The Hough Transform

The fundamental idea behind the Hough Transform is that of a Parameter Space. The best way to explain how this works is by means of an example. Straight lines can be described in the x, y space by the standard equation
[image: image13.wmf]c

mx

y

+

=

but also by the parametric equation
[image: image14.wmf]q

q

sin

cos

y

x

r

+

=

, where r is the length of the normal from the origin and (is the orientation of r with respect to the x axis, as shown in Figure 6.3. The reason for using the parametric equation is that in the standard equation for a vertical line
[image: image15.wmf]¥

=

=

c

m

 and infinity has no real value.

[image: image75.wmf]'

)

'

(

'

ò

¥

¥

-

-

-

=

dt

e

e

t

x

Y

t

i

wt

w

Figure 6.3: Parametric description of a straight line

Consider a single line with a point on it: x0 , y0 , there are a whole series of values for r and (which satisfy this parametric equation. Plotting all these values in the parameter space gives a curve along which the values for r and (are such that a line in the x, y space goes through the point x0 , y0, as shown in Figure 6.4.

[image: image76.wmf]t

p

f

i

Xe

Y

2

-

=

Figure 6.4: One Point and its Parameter Curve

Given another point on the line: x1 , y1 , when this is parameterised it produces another curve in the parameter space which will cross the previous one. The values of r and (where they cross are those of the line on which both x1 , y1 and x0 , y0 lie, as shown in Figure 6.5.

[image: image77.wmf]ò

¥

¥

-

-

-

=

dt

e

t

x

Y

t

i

w

t

)

(

Figure 6.5: Two Points and their crossing point in Parameter Space

If this process is repeated for all points in the image an accumulator array is built up with peaks where the most curves have crossed - this is called the ‘voting’ stage and Figure 6.6 shows an example of this array. An advantage of this voting method is that any uniform noise in the image contributes to all values in the accumulator equally, thereby leaving the relative values unchanged. By using the values of r and (at these peaks a geometric description of the most likely lines in the image is known.

The accumulator array can be any dimension as long as the scaling factors from the size of the original image are known. It is advantageous to make the length of side for (a multiple of 2((that is the maximum angle (can be without repetition) and after some experimentation found that a scaling factor of 50 provided accurate values for (. The maximum size of r is the length of the diagonal across the image and no scaling factor is needed for this parameter.

[image: image78.wmf]'

)

'

(

'

ò

¥

¥

-

-

-

=

dt

e

t

x

Y

t

i

t

w

Figure 6.6: Accumulator Array for Figure 6.2. There are no clear peaks visible.

6.2.1 Hough Transform Optimisations

There are several optimisations which can be applied to the Hough Transform to provide more accurate results and also better performance in the presence of noise.

1. At the voting stage, instead of incrementing the value by 1, increment it by the value of the edge detector at that pixel. So stronger edges contribute more to the accumulator than weaker edges.

2. Perform a second ‘voting’ stage. Having established the curve in the r, (space for a particular image point, find the maximum point on that curve and increment its value in a second accumulator array. This has the effect of removing a lot of the background noise from the original accumulator array and the result is shown in Figure 6.7.

[image: image79.png]

Figure 6.7: The second Accumulator Array. Peaks are now visible as almost all of the background noise has been removed. The highest peak is marked.

Examining the locations of the peaks in Figure 6.7 provides a check that the transform is operating correctly. Matlab sets the origin at the top left hand corner of the array however this has no effect on the maths. The highest peak is at r=31, (=314. Checking with Figure 6.1 confirms that the location of the most prominent line is at y=31 and the angle of this line is 314/50=6.28 rads = 360 (= 0 (, i.e. vertical.

6.2.2 The Hough Transform Error susceptibility

The accuracy of the Hough Transform when performed on speckle patterns depends on the difference in intensity between one area and another to determine whether the line detected is correct or not. However, the random factor involved in creating speckle patterns means that although the overall average intensity difference may be sufficient for detection, the average intensity at the edge may not be.

To determine what ratios of intensity were necessary to guarantee detection, a number of ratios ranging from 1:1.5 to 1:10 were each tested 20 times and the ranking of the edge out of the 10 detected was recorded. The results are shown in Figure 6.8 together with their moving averages in order to compensate for the inconsistencies in the middle ratios. It is clear from this that to guarantee correct line detection position that the ratio of intensities must be at least 1:10 between the two areas, although a ratio of 1:4 provides a reasonable 90% average success rate.

[image: image80.wmf]wt

wt

i

i

Xe

e

t

x

FFT

Y

-

-

=

=

))

(

(

Figure 6.8: Graph showing how the ratio of overall intensities of 2 speckle patterns effects the accuracy of the line detected between them.

6.2.3 Retrieving Lines from the Hough space

The second accumulator array provides a number of peaks which relate to lines in the image, however how many peaks should actually be used? In essence it does not matter because when it comes to equalising each area, if they do not need to be equalised due to an unnecessary line splitting them, nothing has been lost. For this project 10 peaks were selected as this was greater than the number of lines in the samples used. Most end users would have knowledge of their samples and thus an idea of the number of lines involved, so would alter the lines parameter to a number greater than this.

Closer inspection of the second accumulator reveals that although there is less noise present in relation to the first accumulator there are still some spurious points surrounding the peak. This can be seen in Figure 6.9.

[image: image81.jpg]

Figure 6.9: Spurious data points surrounding the peak

 in the second Accumulator Array.

To get the top 10 peaks in this array it is not sufficient to just take the top 10 points by value and use their co-ordinates because some of these spurious points are often greater in value than some of the lower peaks. So in order to get the top peaks it is necessary to remove the spurious points surrounding them before finding the next top value. This is done by first setting the value of the peak pixel in the second accumulator to zero and then setting all pixels within a given radius to zero as well. The spurious points within this circle represent lines which closely coincide with the actual line and so can be discounted. After some experimentation the radius found to be most effective was 11 pixels. Once this is done, the next maximum can be located and so on.

Having established the location of the most likely lines, the next step is to draw these lines in an array the same size as the original image, for example in Figure 6.10. It is important to realise that the Hough Transform cannot detect the length of a line in an image, only its location. The only difference between a short line and one that runs the width of the image will be the number of ‘votes’ it receives, i.e. the height of the peak, with a longer line receiving more ‘votes’. This does not matter for the same reason that the number of lines is not important, as it sorts itself out when the equalisation is done. The lines are drawn by starting with an array full of zeros and then placing 1’s to represent the line. This proves very helpful when trying to detect intersections, as adding two arrays with these lines in results in a 2 where the lines intersect.

With 10 arrays each with a single line in, the next step is to produce two arrays from each line, one with one side of the line shaded, one with the other side shaded. Doing this provides the areas either side of each line, Figures 6.11 and 6.12, which can then be combined with others to show all the separate areas in the image. The areas are represented in a similar way to the lines: by filling the area required with 1’s in an image of 0’s.

	[image: image16.jpg]

Figure 6.10: 1st Line drawn from Figure 6.5.

	[image: image17.jpg]

Figure 6.11: 1st Area from Figure 6.7.
	[image: image18.jpg]

Figure 6.12: 2nd Area from Figure 6.7.

6.3 Intersection Recognition

From the series of area arrays, the next step is to determine the complete set of unique intersections representing all possible areas that the 10 lines could make, as shown in Figure 6.13. Doing this with a limited number of lines is fairly trivial however with three or more lines it becomes far harder. I devised two techniques to achieve this, the first a more complex and thorough approach and the second a simpler but more effective one.

[image: image82.wmf]Gx

Gy

arctan

=

q

Figure 6.13: 10 lines and all the areas between them that need to be recognised. The horizontal and left hand vertical line section off the high intensity speckles, whilst the rest are spurious.

6.3.1 Looping Intersecting and Removal Technique

The methodology behind this technique is fairly straightforward, however it’s quite complicated to implement in practice. The steps taken are as follows:

1. Intersect every area with every other one, each time forming a new image, collectively called Series 1.

2. Discard any empty (if there was no intersection) or duplicate images from Series 1.

3. Compare each image in Series 1 with every other, and if there is any overlap remove it from one of the images and use this to create a new image in Series 2.

4. Discard any empty or duplicate images from Series 2.

5. Series 2 should then be a unique set of all the possible areas made.

Coding these steps requires a relatively small amount of code however most of the time is spent looping through the series of areas performing comparisons and checking for empty arrays. The looping procedure is extremely computationally expensive especially when intersecting 20 areas (2 for each of the 10 lines) results in 380 arrays. Even though the theory may be correct, dealing with this amount of arrays and trying to allow for every possible permutation explains why the technique may fail to identify each area correctly. However with only a few lines present (up to 3) it can correctly identify the separate areas. The result of applying this to the 3 primary lines from Figure 6.13 is shown in Figure 6.14.

[image: image83.jpg]

Figure 6.14: Result of applying the Looping & Removal technique to the 3 primary lines from Figure 6.13. Each area has been coloured differently to allow the viewing of all areas in one figure.

6.3.2 Cumulative Intersection Addition Technique

With the complexity of the Looping and Removal technique being its downfall it was necessary to develop a technique that was much simpler yet still be effective. The theory of the Cumulative Intersection Addition (CIA) technique is to take one of the areas from one side of each line, multiply them by an incrementing factor and cumulatively add them to form a single image. The following pseudo-code shows how this is done. The AreaMatrix is an array of all areas ordered in their pairs, for example: Line 1 produces a pair of areas which form areas 1 & 2 in the AreaMatrix; Line 2 produces a pair of areas which form areas 3 & 4 in the AreaMatrix; and so on.

NoLines=10;
//10 lines are enough for most images

For n=1 to NoLines

SumAreas=SumAreas+(n*AreaMatrix(2*n))

End For

SumAreas is then an array with most of the different areas represented by different numbers. Figures 6.15 and 6.16 show this with 3 and 10 lines respectively. It is clear to see that all adjacent areas are different colours - i.e. the pixels in those areas contain different numbers.

	[image: image19.jpg]

Figure 6.15: CIA technique with 3 lines
	[image: image20.jpg]

Figure 6.16: CIA technique with 10 lines

The only problem remaining is that some of the areas which are not adjacent contain the same number. This is illustrated for Figure 6.16 in Figures 6.17 and 6.18.

	[image: image21.jpg]

Figure 6.17: Areas with the same number in Figure 6.16
	[image: image22.jpg]

Figure 6.18: Areas with the same number in Figure 6.16

As can be seen from these similar areas they do not occur adjacently and so can be separated diagonally. So the final step in this technique is to traverse the image diagonally from bottom left to top right searching for each number in turn from 0 to the maximum and also if there is more than one occurrence of a number if it was not present in the diagonal before the current one, form a new area.

The result from this technique is shown in Figure 6.19 and 6.20 for 3 and 10 lines respectively. Figure 6.19 confirms the 7 separate areas that should be recognised, as does Figure 6.20, but for 48 areas instead.

	[image: image23.jpg]

Figure 6.19: Result of applying the CIA technique to the 3 primary lines from Figure 6.13.
	[image: image24.jpg]

Figure 6.20: Result of applying the CIA technique to the top 10 lines from Figure 6.13.

7. Reflectivity Equalisation

With a successful object recognition technique, it is desirable to equalise any changes in reflectivity and subsequently intensity that exist between the areas recognised in the image. As shown in Section 3.3, variations in reflectivity effect the accuracy of the DIC process and so should be removed. The process this project adopts to achieve this is to take the average intensity of the first area detected and then for each subsequent area divide it by the factor that results in the same average intensity as the first area. This is illustrated further in the following flow diagram.

[image: image84.jpg]

[image: image85.jpg]

[image: image86.jpg]100

[image: image87.wmf]0

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Trial

Position of correctly detected line

1:1.5

1:2.25

1:3

1:3.5

1:4

1:10

4 per. Mov. Avg. (1:1.5)

4 per. Mov. Avg. (1:2.25)

4 per. Mov. Avg. (1:3)

4 per. Mov. Avg. (1:3.5)

4 per. Mov. Avg. (1:4)

4 per. Mov. Avg. (1:10)

[image: image88.wmf]))

(

)

(

(

))

(

)

(

(

2

2

2

2

1

1

1

2

a

l

l

a

l

l

-

-

Ä

+

-

-

Ä

=

t

x

x

b

t

x

x

a

V

[image: image89.wmf]0

)

(

)

(

2

1

=

Ä

l

l

x

x

[image: image90.wmf])

(

)

(

)

(

)

(

2

2

4

1

1

3

2

2

1

1

a

l

a

l

l

l

-

-

=

-

-

=

=

=

t

bx

u

t

ax

u

bx

u

ax

u

[image: image91.wmf]l

d

u

u

u

u

u

u

u

u

V

ò

¥

¥

-

+

+

+

=

]

[

4

2

3

2

4

1

3

1

[image: image92.jpg]10

10

[image: image93.jpg]

[image: image94.jpg]

[image: image95.jpg]5000

4500

4000

3500

3000

2500

2000

1500

1000

500

0

40

60

&0

100

120

140

160

180

200

[image: image96.wmf]l

a

l

a

l

l

l

d

t

bx

t

ax

bx

ax

V

ò

¥

¥

-

-

-

+

-

-

+

=

)]

(

)

(

)][

(

)

(

[

2

2

1

1

2

1

[image: image97.jpg]100

Using the speckle pattern in Figure 7.1 as the input image and using a 3 line cumulative intersection addition method, together with the texture equalisation process described above produces the result shown in Figure 7.2. Close examination of Figure 7.2 reveals two small lines which appear not to have been equalised correctly. This could be caused by either of two reasons.

Firstly the recognised line is not quite straight and strays slightly, causing a high reflectivity area to include some of a lower reflectivity area, which is then not factorised as it should. This is the cause of the horizontal error.

Secondly, if an edge occurs between 2 pixels when this is recognised the detected line will be positioned on one side or the other, as it is impossible for it to exist between 2 pixels. This occasionally causes areas to include parts of other areas that it should not and a similar factorising area occurs.

Apart from these small inconsistencies (which make up a very small percentage of the image) the algorithms work well to reduce the reflectivity variations to zero.

	[image: image25.jpg]

Figure 7.1: Speckle pattern used for input
	[image: image26.jpg]EEEEEE

Figure 7.2: Output from Figure 7.1 after object recognition and reflectivity equalisation

8. Object Recognition & Equalisation Applied

Testing the object recognition and equalisation algorithms on speckle patterns is useful for highlighting potential problems but how do they perform when applied to real images? Figures 8.1 and 8.2 show two real images which have both been created by combining a low and a high exposure image, as described in Section 4.4.

	[image: image27.jpg]

Figure 8.1: Real image created using exposure combination.
	[image: image28.jpg]

Figure 8.2: Real image created using exposure combination.

For each of these images the object recognition and equalisation algorithms were applied and the results are shown in the following Figures.

	[image: image29.jpg]

 Figure 8.3: Sobel Edge Detection of Figure 8.1.
	[image: image30.jpg]

 Figure 8.4: Sobel Edge Detection of Figure 8.2.

The edges detected by the Sobel Edge Detector are much clearer in Figures 8.3 and 8.4 because the average intensity around the edges is constant - unlike for the speckle images. For both edge images a Hough transform threshold of 500 was used.

	[image: image31.jpg]

Figure 8.5: First accumulator array for Figure 8.3.
	[image: image32.jpg]

 Figure 8.6: First accumulator array for Figure 8.4.

There is noticeably less background noise in the first accumulator when processing real images, as shown in Figures 8.5 and 8.6. This is due to less spurious data in the edge array. As a consequence of this the second accumulators contain virtually no noise and very steep peaks. Figures 8.7 and 8.8 show close-ups of the highest peaks in the second accumulators from their respective first accumulators.

	[image: image33.jpg]

Figure 8.7: Close-up of first peak in second accumulator of Figure 8.5.
	[image: image34.jpg]

Figure 8.8: Close-up of first peak in second accumulator of Figure 8.6.

The top 10 lines recognised from these second accumulators were entered into the CIA algorithm and the areas recognised are as shown in Figures 8.9 and 8.10.

	[image: image35.jpg]

Figure 8.9: Areas recognised by CIA technique from second accumulator in Figure 8.7.
	[image: image36.jpg]

 Figure 8.10: Areas recognised by CIA technique from second accumulator in Figure 8.8.

Finally the results of applying reflectivity equalisation to the images using the areas recognised by the CIA technique are shown in Figures 8.11 and 8.12. In both cases the algorithms have worked extremely well in reducing the reflectivity between the major areas in the image. The only anomaly in Figure 8.11 is the connection to the silicon area at the bottom of the image. Because of its curved shape it has not been detected properly, but its intensity is still reduced compared to the original image. Figure 8.12 shows an almost perfect equalisation except for the single pixel line in the centre of the image, the cause of which was explained at the end of Chapter 7. For convenience a thumbnail of the original image is shown above the reflectivity equalised image.

[image: image98.wmf])

(

)

(

a

l

l

-

-

Ä

=

t

h

h

V

[image: image99.jpg]

Figure 8.11: Reflectivity equalised image using areas from Figure 8.9.

[image: image100.wmf])]

(

)

(

[

)

(

]

)

(

[

)

(

2

2

1

1

2

1

a

a

a

-

+

-

=

-

+

=

t

bx

t

ax

t

H

bx

t

ax

t

H

[image: image101.wmf])

(

)

(

a

l

l

-

-

Ä

=

t

h

h

V

Figure 8.12: Reflectivity equalised image using areas from Figure 8.10.

9. Further Texture Recognition Techniques

The success of the object recognition and reflectivity equalisation relies on areas of differing intensity existing within the image. To recognise variations in texture requires a different approach. Using wavelets is an increasingly common method however they are very complex to implement. Another possibility is the use of the frequency contents of regions to determine texture. Figure 9.1 shows a cross section of Figure 8.1 along row 140. The change in intensity at column 50 is clear, however there is also a change in frequency contents, with almost constant frequency to the left of column 50 and a large variation to the right. Measuring any changes in variation across the image would allow the separation of different areas.

[image: image102.wmf]l

a

l

l

l

a

l

l

d

t

x

x

b

d

t

x

x

a

V

ò

ò

¥

¥

-

¥

¥

-

-

-

+

+

-

-

+

=

)

(

)

(

)

(

)

(

2

2

2

2

1

1

1

2

Figure 9.1: Cross section along row 140 of Figure 8.1.

9.1 Texture Equalisation

There is no easy way to directly equalise texture like there is for reflectivity equalisation. To achieve texture equalisation would require the tabulation of the effects of different textures on the DIC technique. With the creation of such a lookup table, a method that examined the area of texture in question, weighted it against those in the table and then calculated a compensation factor could be developed.

The disadvantage of this system is that unless the texture being examined exactly matches one from the lookup table, the amount of compensation will not be precisely correct. However, it does give a good indication of the degree to which the area should be equalised and any improvement results in more accurate results from the DIC. If lookup tables are updated and added to, they can become an accurate means of measuring differences such as texture.

10. Image Noise Removal

Noise is present in all image capture systems so being able to remove it is an important part of getting the highest accuracy possible from the edge detection and recognition algorithms. There are many types of noise filters all with varying applications and advantages. The filter picked for this project was the Median Filter because of its good preservation of edge detail [9].

10.1 The Median Filter

Implementation of the Median Filter is done by the following steps:

1. Consider each pixel in the image in turn.

2. Sort all values from the surrounding neighbourhood (a 3x3 neighbourhood covers 9 pixels) into numerical order.

3. Replace the considered pixel with the value of the middle pixel in the neighbourhood.

For example:

	120
	135
	122
	110
	117

	129
	131
	128
	119
	120

	133
	240
	109
	102
	99

	117
	120
	113
	106
	104

	114
	125
	124
	115
	126

The sorted neighbourhood values are: 102, 106, 109, 113, 119, 120, 128, 131, 240.

The centre pixel value is then replaced by the middle value of 119. If this process was continued for this image, the outlying value of 240 (representing noise) would be replaced and this is one of the advantages of the median filter.

The Filter is also excellent at preserving edge detail, mainly because it does not introduce new values, as a mean filter does. For example, in the following image section, when the 3x3 neighbourhood covers the left side the middle value is 120, when it covers the right side the middle value is 100, preserving the edge completely.

	120
	120
	100
	100

	120
	120
	100
	100

	120
	120
	100
	100

10.2 Applying the Median Filter

Application of the median filter to the speckle pattern in Figure 10.1 produces the images shown in Figures 10.2, 10.3 and 10.4. As the neighbourhood size increases the smoothing becomes more severe and the peak value in the image is reduced from 10x104 to 5x104 with a 7x7 neighbourhood size. In all cases the edges are kept relatively sharp.

	[image: image37.jpg]

Figure 10.1: Input speckle pattern
	[image: image38.jpg]

Figure 10.2: Median filter of Figure 10.1 with a 3x3 neighbourhood.

	[image: image39.jpg]

 Figure 10.3: Median filter of Figure 10.1 with a 5x5 neighbourhood.
	[image: image40.jpg]

 Figure 10.4: Median filter of Figure 10.1 with a 7x7 neighbourhood.

The advantages of the application of the median filter to speckle patterns is that images with areas that differ less in intensity can be correctly recognised by the edge detector and Hough transform. Figure 10.5 shows a speckle pattern with areas multiplied by factors of 1, 5 and 13, this is far less than the suggested ratios needed for detection discussed in Section 6.2.2. Applying a median filter with a 7x7 neighbourhood and using that as the input to the edge detector and Hough transform produces Figures 10.6, 10.7 and 10.8. The final result with the correctly equalised areas is shown in Figure 10.9.

	[image: image41.jpg]

Figure 10.5: Speckle pattern with reduced intensity variations.
	[image: image42.jpg]

Figure 10.6: Median filter of Figure 10.5 with 7x7 neighbourhood.

	[image: image43.jpg]

Figure 10.7: Sobel edge detection of Figure 10.6.
	[image: image44.jpg]

Figure 10.8: Areas recognised by CIA technique from Figure 10.7.

	[image: image45.jpg]Eil

0

60

a0

100

120

1600

1400

1200

1000

500

500

400

200

Figure 10.9: Object recognised and equalised image from Figure 10.5.

11. Conclusion

The algorithms developed through this project successfully recognises objects in images of semiconductors and equalises the reflectivity of these objects, in the majority of cases. Performing this equalisation means that the results of the Digital Image Correlation technique for deformation measurement are significantly more accurate.

Using speckle patterns as test images for the object recognition provides a known environment for optimising and troubleshooting the algorithms. They also allow measurements of errors to be taken, such as the ratio of intensities between two areas to ensure accurate line recognition.

There are several drawbacks of the system as it is implemented in this project.

· In images with texture variations and no reflectivity variations the edge detector will fail to locate any edges. Examples where this happens are rare and there is usually a small change in intensity, which because of the Hough transform’s variable threshold would be picked up.

· The Object Recognition is not perfect. It relies on the edge detection algorithm to locate the correct edges, however if 10 lines are specified this allows some room for error. The second accumulator has a significant effect on reducing background noise which otherwise brings in more errors.

· Images with a number of curved edges in will cause some errors in the output, but if the edges are strong enough the Hough transform will place lines there, leading to small triangular areas along the curved section.

Future work that could be done to further increase the scope and accuracy of this project is detailed below.

· Develop and include a successful texture recognition algorithm. A possible way of doing this is by using Parametric Distributional Clustering to provide image segmentation based on colour and texture variations [10].

· Improve the object recognition procedure to reduce spurious results. This could be done through either the use of a line tracking process or by improving the Hough Transform to detect the length of lines. The latter can be achieved by defining windows of interest in the accumulator arrays around the detected peaks and then using the distribution of votes within the window to provide a complete line segment description [11].

References

1. William S. Meisel, Computer-Oriented Approaches to Pattern Recognition. Academic Press, 1972.

2. Mark C. Pitter, Chung W. See and Michael G. Somekh, “Subpixel microscopic deformation analysis using correlation and artificial neural networks”, Optics Express Vol. 8 No. 6, March 2001.

3. Michael S. Lew, Principles of Visual Information Retrieval. Springer, 2001.

4. Computer Vision Group, University of Bonn. Collection of Microtextures [Online]. Available: http://www-dbv.cs.uni-bonn.de/image/browse.

5. Amara Graps, “An Introduction to Wavelets”, IEEE Computational Science & Engineering Vol. 2 No. 2, Summer 1995.

6. Daisheng Luo, Pattern Recognition and Image Processing. Horwood, 1998.

7. R. D. Boyle, R. C. Thomas, Computer Vision A First Course. Blackwell Scientific Publications, 1988.

8. John C. Russ, The Image Processing Handbook. CRC Press, 4th Edition, 2002.

9. Rafael C. Gonzalez, Richard E. Woods, Digital Image Processing. Addison Wesley, 3rd Edition, 1993.

10. Thomas Zoller, Lothar Hermes and Joachim M. Buhmann, “Combined Color and Texture Segmentation by Parametric Distributional Clustering”, Proceedings of ICPR '02 Vol. 2, pp627-630.

11. Varsha Kamat-Sadekar, Subramaniam Ganesan, “Complete description of multiple line segments using the Hough Transform”, Image and Vision Computing No. 16, 1998, pp597-613.

Appendix 1. Introduction to Correlation and the Shift Theorem

A1.1 Correlation

Correlation is useful when the input x(t) and output y(t) of a system are known but the transfer function h(t) isn’t. For then we can use this to relate the three functions, as shown in Equation A1.11, where (represents correlation. If the input and output are of the same type with the same attributes then the correlation performed is Autocorrelation, however if the input and output are of differing types with different attributes then the correlation is Crosscorrelation. In this project only crosscorrelation is used as the output has been subjected to deformation which changes the image signal by varying amounts over its entirety.

Eqn A1.11[image: image103.wmf]l

d

u

u

u

u

V

ò

¥

¥

-

+

=

]

[

4

2

3

1

It should be noted that unlike convolution, crosscorrelation is not a commutative operation so the order of correlation is important and the result changes substantially between the two, as shown in Equation A1.12.

Eqn A1.12

Performing correlation is quite a complex procedure in the time domain, however in the frequency domain it is far simpler and for this the Fourier transform is used. Equation A1.13 and A1.14 show how the transfer function h(t) can be calculated using the Fast Fourier Transform (FFT) and its Inverse (IFFT).

Eqn A1.13

where *FFT(x(t)) is the complex conjugate of FFT(x(t).

Eqn A1.14

The real part of the transfer function h(t) represents the power spectrum of the images and it is this that can be used with the Fourier Shift Theorem to provide an amount of shift between the input and output images.

A1.2 Shift Theorem

The Shift Theorem states that a delay in the time domain corresponds to a linear phase term in the frequency domain. The proof of this is relatively simple and is shown in Equations A1.21-A1.25.

Eqn A1.21

Let t’=t-(=constant, therefore dt=dt’ and it follows that

Eqn A1.22

Eqn A1.23

Eqn A1.24

Eqn A1.25

So Equation A1.25 shows that the displacement of x(t), (forms a simple relation between the Fourier transform of the input and output, X and Y. From this it is a simple matter to get a value for (as the value of f is known.

Appendix 2. Advanced Correlation

Given an image H(t) and its deformed version H(t-(), as follows:

The following correlation can be calculated:

Eqn A2.1

This correlation can be written out fully:

Eqn A2.2

Let:

Substituting these values into Equation A2.2 and multiplying out gives:

Eqn A2.3

Given that x1(t) and x2(t) are consistent, have random texture and zero mean, it follows that:

Eqn A2.4

Applying Equation A2.4 to Equation A2.3 gives:

Eqn A2.5

Substituting back into Equation A2.5 the values of u1, u2, u3 and u4 gives:

Eqn A2.6

Eqn A2.7

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

CCD

Lens

Rays out of Phase

Coherent Laser Light

Rough Surface

1. Generate a Normally distributed matrix RandImg the size of the image, containing decimal numbers in the range 0-1.

2. Scale this matrix with the wavelength of the laser and express as multiples of 2(, ie:

K=(2(/() RandImg

3. Change to a Phase distribution using the exponent of an imaginary angle, i.e.

� EMBED Equation.3 ���

4. Take the Fourier Transform of P and Low Pass Filter it, using a circular filter.

5. Take the Inverse Fourier Transform of the filtered P.

6. Take the complex magnitude to give real values.

7. This result is scaled to the photon saturation point for the particular CCD in use.

Speckle Pattern Produced

� EMBED Equation.3 ���

� EMBED Equation.3 ���

y

x

 x0 , y0

� EMBED Equation.3 ���

r

(

Curve on which all r & (describe lines in the x, y space which pass through x0 , y0

Value of r

& (for line

r

(

 x1 , y1

 x0 , y0

y

x

Output is a reflectivity equalised version of the input image.

r

(

y

x

4. Multiply TempArea by MeanDifferenceFactor and add to Output. Repeat for all areas.

4. Calculate the mean of the nonzero elements in TempArea, multiply this with the reciprocal of ReferenceMean to get the MeanDifferenceFactor.

3. Select the next area, perform element-by-element multiplication with the input image, save as variable TempArea.

2. Calculate the mean of the nonzero elements in FirstArea and use this as the ReferenceMean. Add FirstArea to Output.

1. Take the first area detected (array using 1’s surrounded by 0’s) and perform element-by-element multiplication with the input image, save as variable FirstArea.

� LINK "C:\\Intensity Results.xls" Chart1 \a \p �Error! Not a valid link.�

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

ax1(t-(1)

bx2(t-(2)

bx2(t)

ax1(t)

� EMBED Equation.3 ���

� EMBED Equation.3 ���

v1

v2

v2(()

(

v1(()

(

(1

(2

b2

a2

c

(r

V

(

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

Metal wire

Silicon

Packaging

PAGE

_1112170923.unknown

_1112619370.unknown

_1112791575.unknown

_1112792685.unknown

_1113035112.unknown

_1112792888.unknown

_1112792407.unknown

_1112792521.unknown

_1112783819.unknown

_1112791466.unknown

_1112791571.unknown

_1112784945.unknown

_1112641085.unknown

_1112358848.unknown

_1112361559.unknown

_1112356222.unknown

_1112358830.unknown

_1112356091.unknown

_1112170368.unknown

_1112170641.unknown

_1112170869.unknown

_1112170637.unknown

_1112170498.unknown

_1112168220.unknown

_1112168237.unknown

_1112167534.unknown

