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In this article, we discuss the standard pricing model framework for synthetic CDOs. Though the
standard framework is by now well accepted, how the model is implemented precisely and,
importantly, how the model is applied, vary across the marketplace. We discuss some of the
outstanding implementation and application issues, and propose a number of questions that
further research on the model should seek to address.

1 Introduction

Derivatives markets are typically called mature when they achieve an adequate level of liquidity,

and, as either a cause or an effect of that liquidity, standardization. Standardization refers to a

number of issues associated with the derivative market, including forms of contracts, documentation,

benchmarks and pricing models. Certainly, proprietary pricing models persist in even the most

mature markets, but a standard pricing model will always take hold, both to facilitate price

communication on the most liquid products and to allow valuation of less liquid products

consistently.

While not truly mature, the market for synthetic CDOs and basket credit derivatives has grown to

the point that it may at least be considered adolescent. In particular, the standardization of the

credit derivatives index contracts and tranches on these indices, coupled with large activity in

single-tranche CDOs, has created an accepted standard definition of what a synthetic CDO is. At

the same time, the market has coalesced around a specific pricing model, the normal copula model.

However, though the majority of market participants rely on this model as a basic framework, there

are many points where specific implementations may differ. Furthermore, applications and

interpretations of the model differ as well, and a number of debates have arisen as to the best way

to quote information from the model.

In this article, we summarize briefly the standard normal copula framework. We then survey the

differences that exist in specific implementations and applications, and examine some of these
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differences through an example. We conclude with some thoughts on what questions we might ask

to evaluate the implications of the differences that exist.

2 The standard model

Throughout this article, we will refer to the single-factor normal copula model as the standard

pricing model. Li (1999) and Li (2000) are typically cited as the first application of the model to

pricing CDOs.

To be clear, the basic structure we are pricing is a simple static unfunded synthetic CDO. The

structure references a portfolio of obligors, typically with equal weightings. As defaults occur,

losses are assigned to theprotection sellerssequentially. That is, losses are assigned to the first

loss protection seller until they reach a certain threshold, subsequent losses are assigned to the next

protection seller until they reach a second threshold, and so on. The portfolio loss level at which a

specific tranche begins to experience losses is referred to as the tranche’s attachment point, and the

level at which the tranche no longer experiences losses as the detachment point. In return, the

protection sellers are paid a running premium on the current amount they are protecting. For

example, suppose the first loss seller receives 500bp annually for protecting the first three percent

of losses on a $10M pool. If no losses have occurred, then the investor is protecting the full

$300,000 and is paid 500bp on this amount; once $100,000 of losses occur, the premium is paid

on the remaining $200,000 that the investor is protecting.1 The protection sellers, particularly the

first-loss investors, may be paid an upfront premium as well. The standard tranches on the two

most common indices (North America and Europe Investment Grade) are listed in Table 1.

Mina and Stern (2003) describe the structure in more detail and point out that to price the

structure, it is sufficient to describe the distribution of cumulative portfolio losses at each payment

time. This means that it is not necessary to describe the full dynamics of the loss process. If we

were to consider structures with path dependence (for example, a structure wherein the second loss

position knocked out if the first loss position were exhausted too quickly), then we would need to

fully describe the portfolio loss dynamics, but for our purposes, the sequence of loss distributions

at each payment time suffices.

1 A premium that is paid in this fashion is often referred to as arisky premiumsince the investor is not certain about how much premium he will
receive. Other conventions, in which the premium is paid on a fixed amount throughout the life of the structure, also exist, but are somewhat
less common.
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Table 1

Standard index tranches and pricing. May 17, 2004

North America Europe

Tranche Upfront (%) Running (bp) Tranche Upfront (%) Running (bp)

0-3% 42 500 0-3% 31 500

3-7% - 331 3-6% - 255

7-10% - 126 6-9% - 105

10-15% - 54 9-12% - 58

15-30% - 16 12-22% - 22

Source: St. Pierre et al (2004).

An important aspect of copula models in general is that they decouple the specification of the

individual stand-alone distributions (in our case, the default probabilities of the obligors in the CDO

at a specific time) from the specification of the correlation structure. Thus, we assume that the

individual obligor default probabilities are known, most likely derived from the single-name credit

default swap market. The correlation structure is then what we specify with our choice of copula

function.

Under the normal copula, the joint probability of two events (in our case, two defaults) is the same

as the joint probability of two events with the same individual probabilities that come from normal

random variables. Specifically, if two obligors have default probabilitiesp1 and p2, then we

represent the default events by the equally likely events{Z1 < α1} and {Z2 < α2}, whereZ1 and

Z2 are standard normal random variables andα1 and α2 are chosen appropriately. We then impose

a correlation betweenZ1 and Z2, and calculate the joint probability of the two events.2 Thus, with

the normal copula as our model and the default probabilities derived from the single-name market,

we have only to specify the correlations to complete our description of the portfolio loss

distribution. Applying the same normal copula and correlations at each payment date gives us the

needed sequence of loss distributions.3

2 In the context of structural models of default, theZ variates here can be identified with the obligors’ firm asset values; see Li (1999) for a
detailed explanation. That the normal copula can be reconciled with structural models gives some “physical” support for the framework, and
keeps it from being simply a mathematical device to produce correlations.

3 It would certainly be possible to consider a term structure of correlations, though this has received little attention in practice.
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While the normal copula gives us a framework for correlations, it remains to specify the particular

correlation values. While any valid correlation matrix could be used, it has become common

practice to restrict the correlation structure to that described by a single common factor.

Specifically, the restriction is that the normal variate associated with each obligor can be

represented by

Zi = wiZ +

√

1 − w2
i εi,

where Z and theεi are independent standard normal random variables. Under this framework, the

correlation between obligorsi and j is wiwj , so the range of possible correlation matrices is quite

limited. In fact, the most common application is to set the weight parameterswi equal for all

obligors and consider just one pairwise correlation value for the entire portfolio.

The benefits of the single-factor restriction are first that it reduces the number of parameters

required by the model, but most importantly that it gives rise to effective techniques to calculate

pricing in closed-form. Most of these techniques rely on the observation that once the value of the

common factor is fixed, then the individual obligor defaults are conditionally independent.4 Thus,

conditionally, the portfolio loss is the sum of independent obligor losses, and the conditional

portfolio loss distribution is the convolution of the individual obligor loss distributions. There are

numerous standard convolution techniques (Fourier transforms, Laplace transforms, moment

generating functions). The pricing calculation then reduces to a numerical integral over the single

factor, with each step in the integration involving a convolution to derive the conditional portfolio

distribution. There have been numerous articles recently detailing similar pricing frameworks,

among which are Mina and Stern (2003), Martin, Thompson, and Browne (2001), Merino and

Nyfeler (2002), and Gregory and Laurent (2003). Additionally, most active credit derivatives dealers

have provided notes on the model; among these are Ahluwalia, McGinty, and Beinstein (2004),

Watkinson and Roosevelt (2004), St. Pierre et al (2004), and O’Kane et al (2003).

A lingering issue is whether the single-factor structure overall will be rich enough to price and

hedge all synthetic CDOs in practice. However, to move away from the single-factor framework

will require meeting two significant challenges. The first is to develop numerical methods that

enable the same level of precision and speed in the calculation of prices and sensitivities that the

marketplace has become accustomed to. The second is to educate the marketplace as consumers of

richer correlation information. Significant effort has already gone into establishing the single

4 See Finger (1999) for examples.
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correlation parameter as a pricing parameter for synthetic CDOs, and a sense of benchmark values

for this correlation now exists. Re-educating the marketplace to a new, more complex correlation

scheme would be a significant hurdle.

3 Variations on the standard model

Though the single-factor normal copula has emerged as the standard framework for valuing

synthetic CDOs, there are still a number of issues which can produce discrepancies between

seemingly similar model implementations. We discuss four of these in this section.

3.1 Correlation structure

As mentioned above, the single-factor correlation structure enables closed-form solutions for CDO

prices. While the more restrictive version (that of a single pairwise correlation) is most common

for wide communication of pricing, the less restrictive version (where the weightswi can vary by

obligor) is also commonly used. Fortunately, this is a relatively simple issue to communicate, and

rarely causes confusion.

3.2 Individual spreads or portfolio average

An exact model of a synthetic CDO accounts for the spreads of each underlying name, and

differentiates, for example, between a portfolio with fifty names at 50bp and fifty names at 450bp

and a portfolio with one hundred names at 250bp. This exact treatment is certainly possible under

the standard model, as long as spreads on all the underlying names are available.

Some model implementations utilize only the portfolio average spread and assume that all

underlying names are characterized by this spread. Clearly, this approximation results in sacrifices

to pricing accuracy. Additionally, this approximation prevents us from being able to distinguish

between the different underlying names for hedging purposes; the simplified model can only

produce a "portfolio hedge" consisting of equal weights on all the underlying names. On the other

hand, the average spread approximation is quite attractive in that it significantly reduces the amount

of information necessary to describe the structure. In practice, the average spread approximation

appears adequate, at least for investment grade CDOs, where the range of underlying spreads is

relatively small. However, there is little information available to quantify the impact of the
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approximation, and it remains an open topic how this approximation fares as spreads widen and

disperse. We take up this issue further in the example in Section 5.

3.3 Fully granular model or large pool approximation

In a full model implementation, we distinguish between portfolios of twenty, fifty or one hundred

names, and account for the fact that portfolio losses can only occur in discrete increments. We will

refer to this as the fully granular model. A second typical model simplification is to approximate

the portfolio by a limiting case with infinitely many small positions. To characterize the limit, start

with the original portfolio. Then create a second portfolio with twice as many obligors, the same

overall characteristics,5 but position sizes half as large as in the original. Repeating this process

brings us to a limiting portfolio with the same characteristics as the original, but whose distribution

is continuous. This limiting distribution is actually quite simple to express, and is now used

commonly to describe credit portfolios. Vasicek (1997) is the first description of the limiting

distribution.6 Finger (1999) applies the model as a shortcut to simulating large credit portfolios.

Most recently, the new Basel capital guidelines7 implement a version of the distribution in their

Internal Ratings-Based Approach to minimum regulatory capital.

The difference between the fully granular model and the large pool approximation is that in the

full model, there is still some idiosyncratic risk: once we condition on the single factor, there is

still some variability in the portfolio, and this variability depends, among other things, on the

number of obligors in the portfolio. In contrast, in the large pool limit, the realization of the single

factor uniquely determines the realization of portfolio loss. As with the average spread

approximation, the large pool approximation involves a sacrifice in modeling accuracy. Here,

though, the benefit is yet another gain in model simplicity: the resulting implementation involves

only a numerical integral and no need for a convolution step.

JP Morgan has been the most vocal dealer promoting the large pool model, and supplies a

spreadsheet implementation to its clients.8 It is important to note that the JP Morgan

implementation utilizes both the large pool and the average spread approximations. There is nothing

inconsistent with applying both, but this has resulted in some confusion in the marketplace, that the

5 For instance, if the 10% of the obligors in the original portfolio have spreads over 100bp, then 10% of the obligors in the new portfolio do as
well.

6 Vasicek (1997) modestly calls the distribution the normal inverse, though many practitioners today refer to it as the Vasicek distribution.
7 Basel Committee on Banking Supervision (2004).
8 McGinty et al (2004).
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two approximations are inextricably linked. In fact, it is possible to run the fully granular model

using the average spread approximation, as it is to run the large pool model using the individual

obligor spreads. Thus, any evaluation of the JP Morgan implementation should seek to isolate the

effects of the two approximations, and not treat them as one choice.

As with the average spread approximation, the adequacy of the large pool approximation relative to

its benefits is still an open question. The JP Morgan model hasperformed well for the investment

grade index tranches (one hundred obligor portfolios), while no practitioner would ever apply the

large pool approximation to five- or ten-name first-to-default baskets. In a different context, there

has been some research9 on the viability of the large pool model for producing economic capital

figures, but this has treated much larger and more diverse portfolios than those that underlie a

typical CDO. There is a need for more research on this topic, applied particularly to the CDO

pricing case and isolating the large pool from the average spread approximation. We provide further

discussion in Section 5.

3.4 Default timing

A final implementation question is how we account for the timing of defaults. As discussed

previously, the standard model requires the computation of the cumulative loss distribution at each

payment date of the CDO. From this point, however, it remains to specify when, during a payment

period, defaults occur. This impacts pricing in two ways. First, if losses are paid at the moment a

default occurs (as opposed to being paid at the end of the period), then the timing of the default

within the period influences the time period over which the loss is discounted. Earlier defaults then

result in losses with a larger discounted value. Second, the timing of a default can influence the

premium paid for the period, since the default (if it impacts the tranche in question) reduces the

size of the tranche. An earlier default thus implies that the size of the tranche is reduced earlier,

meaning that the premium paid for the period is lower. Thus, other things being equal, earlier

defaults during each payment period increase the present value of the loss payments and reduce the

present value of the premium payments, resulting in a reduced valuation for the seller of

protection.

Conceptually, it is possible to have the default timing be purely model-driven, either by

implementing a Monte Carlo scheme or by discretizing the closed form solution at a daily

9 Gordy (2000).
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frequency. In practice, however, it is common to make an assumption. Perhaps the most neutral

assumption is to assume that all defaults happen midway through the payment period. For valuing

the protection seller’s position, a conservative assumption is to assume defaults occur at the

beginning of the period, while for the protection buyer, the conservative approach is to assume

defaults occur at the end of the period. In any case, the effect is subtle, particularly for CDOs

with quarterly frequency, but this can explain pricing discrepancies when two model

implementations appear to be identical. We touch on this issue in the example.

4 Application issues

More active than the implementation questions recently have been discussions on how the model is

applied, particularly regarding the correlation parameter. The discussion of appropriate data sources

for credit correlation is actually fairly mature, in that this has been an active topic among users of

economic capital models since 1997. The CDO market brings a new element to this discussion,

however, since the market provides a mechanism to infer correlation from actual pricing levels. The

most active debate in this arena centers on what method to use for this inference. Finally, the

choice of correlation data influences how the model is used for calculating hedge ratios and other

sensitivities. We treat each of these topics in more detail in this section.

4.1 Correlation data sources

Absent a liquid market from which to draw information, earlier research centered on choosing a

data source and estimation technique that could provide reasonable correlation parameters for

pricing. Correlations of illiquid credits are also critical to economic capital models, and so

investigations into this area date to the release of a numberof public versions of these models in

1997.10

Under the structural model,11 defaults are driven by the evolution of a firm’s assets. Consequently,

dependencies between defaults are driven by dependencies between firm assets. Asset values being

unobservable directly, there are two approaches to estimating their correlation: one is to derive time

series of asset values from the equity market and compute correlations from the derived series12;

10The year 1997 saw the release of three well publicized credit portfolio models: CreditMetrics, CreditRisk+, and Credit Portfolio View. See
respectively Gupton, Finger, and Bhatia (1997), CSFP (1997), and Wilson (1997). While implementations of all three persist in economic
capital applications, the structure of CreditMetrics is most similar to the standard pricing models for CDOs.

11Merton (1974).
12Kealhofer (2001).
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the other is to use the equity correlations directly. The advantage of either approach is that it

allows for a very granular assessment of correlation; we may use equity information on precisely

the names in the portfolio we are pricing. The disadvantage is that we must rely on information

from outside the credit markets, and a model (albeit one with considerable academic and empirical

support) to make the connection. Mashal and Naldi (2002) offer a recent examination of both asset

and equity information as drivers of credit correlations.

A less granular, but more direct, approach is to infer correlations from historical default experience.

The standard pricing model, given default probabilities and correlations, forecasts a distribution of

possible default experiences. With appropriate assumptions, we can consider the yearly outcomes in

a default database as realizations of such a distribution. If we assume knowledge of the default

probabilities for the names in the database, it is then possible to infer the correlation level that best

describes the realized outcomes. De Servigny and Renault (2003) take this approach to provide

correlation estimates which they compare to equity market information. Demey et al (2004) provide

a more rigorous treatment in a maximum likelihood context, and investigate the bias and small

sample properties of their estimator. While promising, particularly for economic capital problems,

small sample issues restrict the correlation estimates to a sector level, and thus, the application of

this method to CDOs may be limited to providing benchmark correlation levels.

Another approach using credit data is to simply correlate moves in the spreads for individual

names. There has been less historical work in this area, since it is not applicable in most economic

capital applications. One drawback of this approach is that the standard CDO pricing model does

not describe movements of spreads, but rather only default events.13 Thus, the correlation in the

model is not a spread correlation, but rather is better interpreted, as discussed previously, as an

asset correlation. Structural models, which link asset moves and spread moves, provide a

mechanism to convert spread correlations to asset correlations, which in turn can be used in the

standard model. The link is complex, however, and to first order, it is reasonable, as many

practitioners do, to ignore this somewhat academic argument and simply use spread correlations in

the model.

13Duffie (2004) notes that this fact also keeps us from using the same model framework to price derivatives whose payoffs are spread dependent,
such as options on credit indices.
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4.2 Correlation as a market factor

While investigations into empirical sources of correlation data continue, the discussion has shifted

in the last year to the use of the synthetic CDO market itself as a source for correlation

information. Many dealers now provide regular pricing on standard tranches of the larger credit

indices. This pricing is the most direct indicator of the correlation of the names in the collateral

pool. It is desirable, then, to leverage this information to value non-standard tranches on the index

portfolios, as well as synthetic CDOs backed by other portfolios. Of course, there is a basis risk

involved with applying correlations for the index portfolio to bespoke CDOs, but this risk appears

preferable to any of the more indirect methods of establishing correlations.

Arguably the most active discussion at this point centers on the details of how to represent

correlations on the standard tranches and to apply these correlations to other CDOs. If we have

pricing information for a tranche and its underlying names, we can solve for the single correlation

that under the standard model reproduces the tranche pricing. This notion of correlation is typically

referred to as the tranche’simplied correlationor compound correlation. Typically, the implied

correlations vary across the different tranches on a single portfolio, and indeed a profile where

implied correlation falls between the first and second loss tranches and then rises for subsequent

tranches is common. While quite intuitive, the implied correlation approach has a number of

drawbacks, chief among which is that it frequently fails when applied to the second loss tranche of

the major indices.14 The failure is either that there are two correlation levels that reproduce the

tranche pricing, or more seriously, that no correlation level reproduces the tranche pricing.15 This

failure can be an indication that the constant correlation, or single factor framework, is not

adequate to describe all price possibilities, but can also be an indication that we should utilize the

constant correlation framework differently.

To address this and other shortcomings of the implied correlation framework, a number of dealers16

now utilize base correlations, sometimes referred to asdetachment correlations. Though specific

implementations vary slightly, the idea behind base correlations is to infer correlation levels that

price a succession of first loss tranches, rather than the specific standard tranches. The key

observation in the approach is that any arbitrary tranche can be represented as the difference

between two first loss tranches. For instance, selling protection on the 3-7% tranche of the North

14The standard second loss tranches are 3-7% on the Dow Jones CDX North America Investment Grade, and 3-6% on the iBoxx European
Investment Grade.

15McGinty et al (2004) and St. Pierre et al (2004).
16McGinty et al (2004) and St. Pierre et al (2004).
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America index is equivalent to buying protection on the 0-3% tranche and selling protection on a

hypothetical 0-7% tranche. Under the base correlation approach, we fix a single correlation to price

the 0-3% tranche, then look for a second correlation to price the 0-7% tranche such that the price

difference is consistent with the observed 3-7% tranche price. By construction, this approach

resolves the problem of multiple correlation solutions, since first loss tranche prices are always

monotonic with correlation. In practice, the base correlation approach is successful for pricing the

problematic second loss tranches. It should be noted, however, that calibration problems persist

with this approach, as it is possible that no set of base correlations can be chosen to calibrate to

the most senior tranche.17 Depending on our disposition toward the standard model, we can see

such a situation as either an arbitrage opportunity (though one that is difficult to realize) or a

failure of the model framework.

Beyond improving our ability to calibrate the model to market prices, the base correlation approach

also provides a more natural framework to translate calibrated correlations to other tranches or

CDOs. For instance, suppose we are pricing a 2-8% tranche on the North American index. Under

the implied correlation framework, we would have correlation levels for the standard 0-3%, 3-7%,

and 7-10% tranches. Since each correlation is associated with both an attachment and detachment

point, it is difficult to see how we might interpolate across the implied correlation levels. Under

the base correlation framework, we associate correlation levels with the sequence of first loss

tranches: 0-3%, 0-7%, and 0-10%. Since these correlations depend only on a detachment point, it

is natural to interpolate to obtain correlations for 0-2% and 0-8% tranches, and then to use these

tranches to value the 2-8%.

This same interpolation approach can be utilized to apply a correlation curve calibrated to the

index tranches to price tranches on a bespoke CDO portfolio. As mentioned before, there is a basis

risk here, though at present, there is little information to quantify this. One other issue that arises

is how to normalize the correlation curve. For instance, if the bespoke CDO portfolio has an

expected loss that is twice that of the index, then it may not make sense to use the same

correlation to price similar tranches on the respective portfolios.

JP Morgan18 proposes normalizing the credit correlation according to multiples of tranche expected

loss, with the base correlation associated precisely with the portfolio expected loss indicated as the

At-the-Money (ATM) correlation. Thus, to price the 0-6% tranche of the bespoke CDO, we would

17St. Pierre et al (2004).
18Ahluwalia, McGinty, and Beinstein (2004).
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use the base correlation associated with the 3% detachment point on the index. Similarly, if we

wish to assess whether a particular index tranche is expensive relative to historical levels, we would

compare the base correlation today with the historical base correlation corresponding to a

detachment point at the same multiple of expected loss. The JP Morgan study demonstrates that

this approach does explain much of the difference between the correlation profiles of the North

America, Europe, and Japan indices, though it recognizes that an examination over a longer

historical period will be necessary to be more conclusive. Interestingly, this approach does not

appear to explain correlations on the newer high yield indices, where correlations are significantly

higher, even accounting for the higher expected loss.19

4.3 Hedging conventions

An important consequence of how we represent the correlation structure is how we utilize the

model to compute hedge ratios. Simply put, we compute the hedge ratio for a tranche by shifting

the spread on one or more of the underlying names, and then revaluing the tranche, holding all

other pricing parameters equal. There is a difference, however, between holding implied correlations

constant, and holding the base correlation curve constant, meaning that the hedge ratios that result

will depend on which representation of correlations is used.

A second issue regarding how the model is used to compute hedges is how granular the hedges

should be. It has become common practice, particularly with tranches on the indices, to describe

the leverage of a tranche by providing the tranche’s delta to the index, that is, the tranche’s

sensitivity to a parallel move in the spreads of all of the index names. In fact, many dealers now

quote the index delta when they quote tranche pricing, and provide preferential pricing if the

counterparty is willing to “exchange delta,” or take on the other side of the dealer’s index hedge,

at the same time they enter a position on the tranche. Clearly, there is a risk to hedging only

against a parallel spread move, when the same overall move in the index could be achieved by

larger moves in a smaller number of names.

If we take the opposite extreme, and examine spread moves in only one name at a time, we see

that the resulting hedge ratios depend significantly on the spread level of each name.20 Moreover,

the names with the largest hedge ratios can vary depending on the tranche attachment point,

particularly when there is a significant dispersion of spreads in the portfolio. Thus, the practice of

19Mahadevan, Polanskyj, and Ambardar (2004).
20Mina and Stern (2003).
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Table 2

Pricing on North America Investment Grade index tranches. September 10, 2004

Tranche Upfront (%) Running (bp)

0-3% 38.9 500

3-7% - 266

7-10% - 106

10-15% - 39

15-30% - 12

Source: Mahadevan, Polanskyj, and Ambardar (2004).

hedging only with a position in the index (that is, a set of equally weighted positions on the

underlying index names) might not be effective when the spreads on the index names are diverse.

In practice, with spreads tight and compressed today, this issue is of only marginal importance. A

further examination under stressed spread scenarios would be prudent.

5 Example

To illustrate the effects of some of the implementation and application choices, we provide an

example using tranches on the North American investment grade index (CDX.NA.IG.3). The index

is composed of 125 investment grade credits. For each of the underlying credits, we calibrate

default probabilities to the five-year credit default swap spread as of September 10, 2004, as

provided by Mark-It Partners. On this day, the average five-year spread across the index credits is

57 basis points; the tightest spread in the index is 17 basis points (AIG), while the widest is 493

basis points (Bombardier). We will examine the five standard tranches on the index, using the

prices in Table 2. Throughout the example, we will assume a recovery rate of 40% for all names

and a risk-free annual discount rate of 4%.

Our first exercise is to investigate the effect of the implementation choices described in Sections

3.2 and 3.3. The two choices – using individual spreads or the portfolio average, and using the

fully granular model or the large pool approximation – give us four distinct model implementations.

For this exercise, we assume in all cases that defaults occur at the end of each payment period.
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Under each of the four model implementations, we calibrate a curve of base correlations to the

tranche prices. Recall that base correlations are the correlations used to price of a succession of

first loss tranches (0-3%, 0-7%, and so on) in a way that is consistent with the market pricing of

the actual tranches. The four base correlation curves are presented in Table 3. We see that the

correlations calibrated using the average spread implementations are slightly less than those

calibrated with the individual spread implementations. For the first loss (0-3%) tranche, this result

is consistent with our intuition. The first loss tranche (which, assuming 40% recovery, is

completely exhausted by just seven defaults) is mostly influenced by the names with the widest

spreads (such as Bombardier at 493bp). Other things being equal, replacing the handful of such

names with the overall benign average spread of 57bp, reduces the expected loss on the 0-3%

tranche. Recalling that expected losses on equity tranches are inversely related to correlation, we

must therefore decrease correlation to compensate for the reduction in expected loss to recover the

market price.

By contrast, the calibrated correlations rise when we move from the granular to the large pool

model. Recall that the large pool model has the same correlation structure as the granular, but that

given the common factor return, it is assumed that there is no conditional variance in the portfolio.

Thus, other things being equal, the portfolio loss volatility under the large pool model will be

lower. To compensate for this lower volatility, we calibrate to a higher correlation.

While interesting, the differences in levels of the calibrated correlations are not of themselves

crucial, as long as each of the four model implementations can in fact be calibrated to the current

market. What is more relevant are consequent outputs and applications of the model. As we have

discussed, a common practice is to hedge index tranches with a position in the index itself. Once

we have calibrated our model to prevailing tranche prices, we can compute the mark-to-market

impact on the tranches and the index of a change in the underlying credit spreads, assuming

correlation stays constant. In our example, we examine a shift of one basis point in each of the

underlying index names. We then define a tranche’s hedge ratio as the size of an index position

required to offset the tranche mark-to-market change under our one basis point shift. The hedge

ratios under each of the four model implementations are displayed in Table 4. Here, we see that

the granular and large pool models produce almost identical hedge ratios, and that the two spread

implementations produce discrepancies of five to ten percent.

Our second exercise is to investigate the effect of the assumed default timing. We return to the

granular model using the individual spreads, and compare our previous results, where defaults were

assumed to occur at the end of each payment period, to the case where defaults occur at the
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Table 3

Base correlations (in %) for different modeling choices

Granular Granular Large pool Large pool

Tranche Ind. spreads Avg. spread Ind. spreads Avg. spread

0-3% 19.9 18.5 23.0 21.5

3-7% 29.2 27.8 30.8 29.4

7-10% 33.0 31.9 34.3 33.2

10-15% 40.7 40.0 41.6 40.9

15-30% 61.4 61.1 61.6 61.7

Table 4

Hedge ratios for different modeling choices

Granular Granular Large pool Large pool

Tranche Ind. spreads Avg. spread Ind. spreads Avg. spread

0-3% 12.50 13.08 12.38 13.06

3-7% 3.82 3.77 3.86 3.78

7-10% 0.97 0.91 0.97 0.90

10-15% 0.46 0.41 0.46 0.43

15-30% 0.20 0.18 0.22 0.21
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Table 5

Effect of default timing on correlations and hedge ratios

Correlation (%) Hedge ratio

Tranche End Beginning End Beginning

0-3% 19.9 21.4 12.50 12.75

3-7% 29.2 31.3 3.82 3.88

7-10% 33.0 35.7 0.97 0.98

10-15% 40.7 44.4 0.46 0.46

15-30% 61.4 66.7 0.20 0.20

beginning of each payment period. The results for base correlation and hedge ratio appear in Table

5. As we discussed earlier, earlier defaults lead to lower valuations for the protection seller. To

compensate for this, then, on first loss tranches, we expect to calibrate to a higher correlation. This

is in fact what we observe, though the differences are minor, and the discrepancies in hedge ratios

are comparable to those we saw earlier from switching to the large pool model.

Our last exercise is to examine the impact of a switch in correlation convention. In Table 6, we

display the implied (or compound) correlations, and resulting hedge ratios, that we calibrate to the

same set of tranche prices. By construction, the results for the 0-3% tranches are identical, and not

surprisingly, the implied correlation for the second loss tranche is anomalous. Of more concern are

the hedge ratios, where we see discrepancies of a factor of three for most tranches. Thus, the

choice of correlation convention has significantly more practical impact than any of the modeling

issues we examined previously.

6 Conclusion – what questions should we be
asking?

The single-factor normal copula model has taken hold as the standard pricing framework for

synthetic CDOs. It is premature, however, to state that this is more than a temporary phenomenon.

Certainly, there are alternate models, but just as importantly, as we have surveyed in this article,

there are numerous implementation alternatives, even within the standard framework. The resolution

of these alternatives, and ultimately the longevity of today’s standard model, still depends on the

model’s performance through a variety of market scenarios. Fortunately, the existence of an active
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Table 6

Effect of correlation convention on correlations and hedge ratios

Correlation (%) Hedge ratio

Tranche Base Implied Base Implied

0-3% 19.9 19.9 12.50 12.50

3-7% 29.2 5.2 3.82 11.07

7-10% 33.0 19.7 0.97 3.98

10-15% 40.7 21.8 0.46 1.70

15-30% 61.4 30.4 0.20 0.52

market in synthetic CDO tranches provides for a true test of the model. This is in stark contrast to

the discussion of credit portfolio models for economic capital, where there is no market, and little

empirical data, with which to adequately judge the model assumptions.

We conclude with some thoughts on some of the dimensions along which the model and its

implementations will be judged.

Link to the empirical data. Do any of the empirical methods of estimating correlation provide

reliable results, or is correlation in the standard model purely a technical factor, unrelated to

anything that is truly observable? It will be difficult to continue to use the standard model if there

is no empirical way to at least estimate a range for the correlation parameter.

Calibration of the full range of prices. As discussed before, there are occasions where no level of

correlation can explain tranche pricing. That this occurs frequently under the simple implied

correlation representation gave rise to the discussion of base correlations. Base correlations, while

providing for broader coverage, can fail at times to describe a set of market prices that do not

violate any strict arbitrage constraints. Should these situations become common, unless they can be

resolved through a judicious set of implementation choices, it will call into question either the

single-factor structure, or the normal copula, or both.

Stability of calibrated parameters. Even if the model can describe market prices consistently, it will

prove unsuitable if the correlation parameters are not stable through time, or if movements in the

correlation parameters cannot be rationalized with broader events. Across the capital structure of a

given CDO, a single correlation is not sufficient to price all the tranches, and a correlation
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structure exists. While an indication that the standard model does not perfectly describe prices, the

correlation structure is not in itself a problem. However, if we are unable to rationalize the shape

of the structure, or if the structure changes in ways that are not at least intuitive in hindsight, we

may judge the standard model to be deficient.

Hedge performance. As the market for the most liquid tranches evolves, pricing levels will derive

from supply and demand effects, rather than from model outputs. At this point, the primary use of

the pricing models will be for hedging positions in the tranches. The ability of a specific model

implementation to describe an adequate hedging program will then be the ultimate model test. St.

Pierre et al (2004) investigate the historical performanceof index hedges under the implied and

base correlation representations, and conclude that the base correlation framework produces lower,

though still at times unacceptably high, tracking error. Extensions of this study should seek to

cover a longer historical period, hedging strategies other than the simple index hedge, and a range

of collateral portfolios (for instance, a diverse high yield portfolio in addition to the typical

compressed investment grade).
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