

Mathematical Methods of Image Processing - A Progress Report on Course Development S. Allen Broughton and Edward R. Doering Rose-Hulman Institute of Technology

Authors

S. Allen Broughton - Mathematics
Edward R. Doering - Electrical and Computer Engineering

Foundation coalition funding

- Engineering Education coalition consisting or Rose-Hulman and others
- course developed as part of upper division curriculum development
- builds upon sophomore level matrix algebra taken by all students, developed by FC

Outline of presentation

- Rose-Hulman background
- Imaging systems certificate program
- Foundation Coalition funding
- Course philosophy and concepts
- Course outline
- Adapting the course
- Audience questions

Rose-Hulman background

- private, undergraduate college, 1600 mathematics, science and engineering students
- teaching paramount, scholarship expected
- 17 math faculty, pure and applied
- good interaction between departments
- upper division mathematics taken by many non-majors (few majors)
- abundant computing facilities

Imaging certificate program

- Joint program of
 - Electrical and Computer Engineering
 - Computer Science
 - Physics and Applied Optics
 - Mathematics
- Requirements
 - three required courses
 - two electives
 - project

Foundation coalition funding

- Engineering Education coalition consisting or Rose-Hulman and others
- course developed as part of upper division curriculum development
- builds upon sophomore level matrix algebra taken by all students, developed by FC

Course philosophy - 1

- Image processing = linear algebra
- key ingredients
 - vector space, vectors, matrices
 - basis,
 - dot products and orthogonality
 - transforms and matrices

Course philosophy - 2

- use image processing as a motivation for studying matrix based linear algebra concepts
- everything is finitely sampled
- all construction can be handled by methods of linear algebra
- signal vector
- image matrix

Course philosophy - 3

- pure waveforms orthogonal basis
- energy scalar products
- frequency decomposition transform
- energy preserving unitary
- frequency response eigenvalues and eigenvectors

Course implementation - 1

- 10-week course
- juniors and seniors
- Electrical Engineering, Computer Science main customers
- vector concepts from Calculus
- 5 weeks of matrix algebra in DE and matrix algebra course
- some Fourier series

Course implementation - 2

- MATLAB is the enabler
- extensive classroom visualization
- Students have extensive programming experience
 - all have Maple experience
 - some Matlab experience
 - some have C++ experience

Course outline

- Image compression (or some thing else) is the over-all motivating theme
- there are two main parts about 5 weeks each
- Part I Fourier based methods
- Part II Wavelet and filter bank methods
- Students complete a team based project

Course outline Part I

- Signals as vectors
- Images as matrices
- Discrete Fourier transform is matrix transform
- Discrete Cosine Transform
- Block transforms
- Student project implement JPEG algorithm using Matlab

Course outline Part II

- Filtering and convolution
- Filter banks
- Discrete Wavelet Transform
- Compression project

Discrete Fourier Transform

- Fourier transform in the course context
- Define pure wave forms

$$E_k(r) = \exp(2\mathbf{p}i\frac{kr}{N}), r = 0, 1, ..., N-1$$

Discrete Fourier Transform

• Define Fourier transform

$$\hat{X}(k) = X \bullet E_k = \sum_{r=0}^{N-1} X(r) E_k(-r)$$

Matrix form

$$\hat{X} = F_N X$$

Discrete Fourier Transform

$$\hat{X} = F_m X F_n^t$$

Matrix form can be exploited to obtain results

DFT for Images

 $\hat{X} = F_m X F_n^t$

Modification of the course

- More theoretical and mathematics based
- DFT and filtering as a "hook" or a theme for a second linear algebra
- many mathematics topics can be interpreted in terms of image processing
- simple and interesting projects can be undertaken using MATLAB

Thank You for listening!

Questions???

URL's

- Course webpage
- http://www.rosehulman.edu/~brought/courses/ma490mip/

• e-lecture

 http://www.rosehulman.edu/~brought/Epubs/Imaging/waveimage.html

Foundation Coalition

http://foundation.ua.edu/