A very brief introduction to MatLab

Defining a variable, a vector, and a matrix

1. The simplest form is to assign a value directly, eg. x = 2.

2. If you do x = 0.707 + 0.707*i, you will create a complex number, provided you have not use the symbol i previously for other purpose (you can use j as well);

3. If you do x = [1 2 3], you will create a row vector, three long, with elements 1, 2, 3;

4. If you do x = [1; 2; 3], you will create a column vector, three long, with elements 1, 2, 3;

5. If you do x = zeros(1,4), you will create a row vector, all zero, four long;

6. If you do x = zeros(4,1), you will create a column vector, all zero, four long;

7. If you do x = zeros(2,4), you will create a rectangular matrix, all zero, 2 x 4 in size;

8. If you do x = zeros(1,16), follow by x(7:11) = 1, a rectangular function will be resulted. Try it;

9. You can repeat 5, 6, and 7 above by using ones instead of zeros. You can find out more about ones and zeros by typing help ones/zeros, or by look at the help menu;

10. Provided you have not erased the variables, you can always recall them by typing the variable names;

11. Try doing x = [1 2 3] and x = [1 2 3];, one with and one without the ; and see the difference;

12. If you do x = a : b : c, you will create a row vector, with the first element equals to a, an increment of b, the last element up to but not beyond c;

Manipulation of variables, vectors, and matrices
1. For single variable (real or complex), all the usual rules apply;

2. There are many build-in functions such as sin, cos, log, exp, etc. which may be applied to variable;

3. If x is a vector/matrix, and c is a constant, the operation x + c will result in a vector with each element being x increased by c. Similarly for multiplication, division, and subtraction;

4. If x is a vector/matrix, the operation y = cos(x) will result in a new vector/matrix whose elements are given by cos(x). The same is true for other mathematical functions;

5. If x and y are two vectors/matrices, z = x(y will give you matrix multiplication. However, z = x.(y (note the dot after x) will result in the dot product of the two vectors/matrices. You can do ‘dot division’ as well;

6. There are many matrix operations that you can find from the help menu.

Plotting and displaying results
1. If you have two vectors x and y, plot(x,y) will plot x against y. You can also do plot(y);

2. If you have a 2D array z, you can displayed the result in many different ways, such as imagesc, mesh, surf, plot3 etc. They are explained in the help menu;

3. For both 1) and 2) above, you can define and label the axes, as well as giving title to the graphs;

4. If you plot one graph and then another, the second one will simply over-write the first. To prevent this happening, you can number the graph by using figure(n) before plotting, or you can use figure, which will increment the figures automatically;

5. You can have more than one graph on a page by using subplot;

6. None of the display functions like complex numbers.

Fourier transform

1. fft and fft2 produce the one and two dimensional Fourier transform of a vector/matrix;

2. If you have a vector x, the operation fx = fft(x) will produce the discrete Fourier transformation of x, stored in the array fx. The operations plot(abs(fx)), and plot(angle(fx)) will give the magnitude and phase spectra of the function x;

3. Try this as an exercise:

· Create a row vector x 128 long, with zero every where, except from 55 to 75, where the function should have values of 0.5;

· Perform the fft of x, and call the spectrum fx1;

· Plot x, abs(fx1), and angle(fx1) on three separate windows. Look at the last two to see if they are expected. If you have difficulty seeing details of any plot, you can use the commend axes or zoom;

· Repeat the last two steps but this time with fx2 = fftshift(fft(x)). Again look at the plots of the spectrum to see if they make sense;

· Repeat again but with fx2 = fftshift(fft(fftshift(x)));

· The results above demonstrate one very important aspect of DFT, which is the DFT treats both the input function and the output spectrum as periodic functions;

· Repeat the first three steps, but with points 50 to 80 equal to 0.5. Compare the resulting spectrum with fx1, and explain the difference in terns of the similarity theorem;

· Repeat the first three steps, but with points 56 to 76 equal to 0.5. Compare the resulting spectrum with fx1, and explain the difference in terns of the shift theorem.

M-files

If you open the Matlab window, go to File, select New and then M-file, an editor window will be opened, which you can use to generate/edit Matlab files. You can then run the programme provided the path is correct.

A few more exercises

1. Create a 2D matrix x(n,m) (select appropriate values for n and m), with values of all element to be zero;

2. Display x by using some form of 3D plot;

3. Take the 2D FFT of x, remembering the fftshift command;

4. Display the spectrum of x by using some form of 3D plot/display;

5. Select the central row of the spectrum to form a row vector. Display the vector by using plot;

6. Generate a low pass filter and apply it to the function x. You will find that it may be easier to perform the filtering in the frequency domain. Display the low pass filtered version of x.

